
POULTRY POSE ESTIMATION BY DETECTING

KEYPOINTS WITH DEEP CONVOLUTIONAL NETWORK

AMIR HAKIM BIN HILMI

COLLEGE OF ENGINEERING

UNIVERSITI TENAGA NASIONAL

2022

POULTRY POSE ESTIMATION BY DETECTING KEYPOINTS WITH DEEP

CONVLUTIONAL NETWORK

By

AMIR HAKIM BIN HILMI

Project Supervisor:

MR. DICKSON NEH TZE HOW

THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF ELECTRICAL AND ELECTRONIC ENGINEERING

COLLEGE OF ENGINEERING
UNIVERSITI TENAGA NASIONAL

2022

iii

DECLARATION

I hereby declare that this thesis, submitted to Universiti Tenaga Nasional as partial

fulfilment of the requirements for the degree of Bachelor of Electrical and Electronic

Engineering, has not been submitted to any other university for any degree. I also

certify that the work described herein is entirely my own, except for quotations and

summaries sources of which have been duly acknowledged.

This thesis may be made available within the university library and may be

photocopied or loaned to other libraries for the purposes of consultation.

 14 January 20 22 Amir Hakim Bin Hilmi

 EE0102953

iv

DEDICATION

This work is specially dedicated to my aunt, Dr. Norarlinda Binti Mohamed Khalid,

who sadly has passed on Christmas 2020, without her constant presence in my first 22

years of life I would not have the inspiration and the mental strength needed to see

through my academic ambitions.

v

ACKNOWLEDGEMENT

Syukur, Alhamdulillah. First and foremost, I would like to thank my supervisor, Mr.

Dickson Neoh Tze How, for the time he invested in me guiding and explaining the

necessary concepts to complete this thesis. I sincerely appreciate his encouragement

from the early stages until the final stages of this project. His experience working with

Artificial Intelligence to solve a real-world problem has been a great factor in his

crucial and excellent guidance. The process of completing this thesis would have been

much tougher without his advice and guidance.

 I would also like to thank Dr. Zafri Bin Baharuddin, who taught me the

Artificial Intelligence course (ECEB463) in the previous semester. During his

teachings, he passionately taught in detail, many of the necessary Deep Learning

concepts that are used in this thesis. Without the basic concepts taught by him, the

starting process of this project would have been a lot harder. I would also like to thank

any person who directly and indirectly has contributed to my final year project.

 Finally, words alone cannot express the thanks I owe to my parents, Mr. Hilmi

Bin Mohtar and Mrs. Rozita Binti Hasan, who have provided endless support

necessary to complete this thesis and the entirety of my bachelor’s degree journey.

Thank you for the advice and financial support over the years. Not forgetting also, to

all my grandparents and other close relatives, who always pray for my success from a

far. Last but not least, to my siblings -- Amirah and Mikhail, who has been a constant

source of joy in my life. I love both of you so much.

vi

ABSTRACT

Nowadays, there is an increasing awareness of acceptable farm animal welfare

conditions, farm animal health, efficiency, and sustainable farm environments. Animal

behavioural analysis can provide an insight into the health of these farm animals.

Poultry chicken is a white meat source that has one of the highest worldwide demands.

The conventional method to diagnose disease in poultry flock is through observation

by a veterinarian and what the veterinarian determines, and this method is no longer

viable because, in large-scale production, it requires many veterinarians to perform

regular inspections, which is both time-consuming and labour-intensive and this will

make it harder to detect sick poultry at an early stage. Hence, behavioural analysis

which is a process that could be used to recognize sickness in poultry would greatly

benefit not only the poultry farming industry but also the consumer. Diagnosing

poultry diseases can be done through any indication shown by poultry’s behaviour.

One of the bases of behavioural analysis is accurate pose estimation. An accurate

poultry pose estimation would be able to identify when the posture of the poultry is

abnormal, with such data the farmers could find a way to cure or isolate the sick

poultry. Hence, this paper is studying how a class of Artificial Intelligence (Deep

Convolutional Network) can be utilized to accurately detect the poultry’s body

keypoints in a video. Poultry keypoint detection involves predicting the location of the

specific body keypoints of the poultry like the centre of the body, head, tailbase, left

and right leg. Accurate poultry’s body keypoint detection using Artificial Intelligence

is the basis to develop an accurate automated poultry health classifier. This paper will

go into detail about the method used to gather the needed data to train the Deep

Convolutional Network, methods to and tuned train the network to accurately predict

and detect poultry’s body keypoints on a video. This paper would also compare and

find the best available Deep Convolutional Network that would be deemed suitable for

keypoint detection on poultry using a state-of-the-art method called DeepLabCut

which is a pose estimation toolbox.

vii

CONTENTS

Page

DECLARATION III

DEDICATION IV

ACKNOWLEDGEMENT V

ABSTRACT VI

CONTENTS VII

LIST OF TABLES X

LIST OF FIGURES XI

LIST OF ABBREVIATIONS XIII

CHAPTER 1 INTRODUCTION 1

1.1 General Background 1

1.2 Problem Statement 2

1.3 Proposed Solution 2

1.4 Objectives of the Research 2

1.5 Scope of Thesis 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Keypoint Detection 5

2.2.1 Definition and human application 5

2.2.2 Significance of Poultry Pose Estimation 6

2.3 Deep Learning 7

2.3.1 Convolutional Neural Network 7

2.3.2 CNN in Keypoint Prediction 8

viii

2.4 Related Work 9

2.4.1 The Problem with Detecting Poultry 9

2.4.2 Deep Learning Technique to Detect Poultry Chicken 10

2.4.3 Methods of Detecting Sick Poultry 12

2.4.3.1 Machine learning method 12

2.4.3.2 Deep learning method 12

2.3.4 Related Work Conclusion 14

CHAPTER 3 METHODOLOGY 16

3.1 Introduction 16

3.2 Software Used 16

3.2.1 DeepLabCut 16

3.2.1.1 GUI installation with Anaconda environments 17

3.2.2 Google Colab Pro and Google Drive 19

3.3 Dataset Preparation 20

3.3.1 Data Gathering 20

3.3.2 Data Augmentation 21

3.3.3 Labelling Data 22

3.3.3.1 Creating project 22

3.3.3.2 Labelling convention and tool 24

3.4 Training the Deep Convolutional Network 30

3.4.1 Transfer Learning 30

3.4.2 Hyperparameters 31

3.4.2.1 Learning rate 31

3.4.2.2 Train-test split ratio 33

3.3.2.3 Training iteration 34

3.5 Network Performance 36

3.5.1 Evaluation and the Metrics Used 36

3.5.1.1 Pixel error and confidence level 36

3.5.1.2 Training loss 37

ix

3.6 Keypoints Prediction on a Video 38

3.6.1 Confident level or likelihood 38

3.6.2 Create Predicted Labelled Video 40

3.7 Flowchart 42

CHAPTER 4 OBSERVATION AND RESULTS 43

4.1 Overview 43

4.2 Performance of Resnet-50, Resnet-101, and Mobilenet V2 43

4.3 Testing Different Training and Test Dataset Split Ratio 45

4.4 Network Performance of Default and Custom Learning Rate 46

4.5 Custom Model Comparison 48

CHAPTER 5 ANALYSIS AND DISCUSSION 50

5.1 Important Concept for Discussion 50

5.1.1 Overfitting 50

5.1.2 Pixel Error Categorization 50

5.2 Best Network Supported by DeepLabCut 51

5.3 Best Train and Test Splitting Ratio 53

5.4 Custom Learning Rate Performance 54

5.5 Best Performing Custom Model 55

CHAPTER 6 CONCLUSIONS 59

REFERENCES 61

APPENDICES 65

APPENDIX A 65

APPENDIX B 68

x

LIST OF TABLES

Table No. Page

3.1 Parameters of the config file 24

3.2 Parameter for bodyparts 27

3.3 Parameter for skeleton 27

3.4 Default dynamic learning rate 33

4.1 Default dynamic learning rate 44

4.2 Performance at 100,000 training iterations 44

4.3 Performance at 200,000 training iterations 44

4.4 Performance at 300,000 training iterations 44

4.5 Frames used for each splitting ratio 45

4.6 Performance at 100,000 training iterations 45

4.7 Performance at 200,000 training iterations 45

4.8 Performance at 300,000 training iterations 46

4.9 Default dynamic learning rate 47

4.10 Custom dynamic learning rate 47

4.11 Performance at 100,000 training iterations 47

4.12 Performance at 200,000 training iterations 47

4.13 Performance at 300,000 training iterations 47

4.14 Charactertics of CM1 and CM2 48

4.15 Custom dynamic learning rate 48

4.16 Performance at 200,000 training iterations 49

4.17 Performance at 300,000 training iterations 49

5.1 Pixel error category 51

5.2 Architecture of different Resnet variants 56

xi

LIST OF FIGURES

Figure No. Page

2.1 Posture comparison of sick and healthy chicken 6

2.2 Typical architecture of CNN 7

2.3 Deconvolutional layer and CNN 8

2.4 Convolutional neural network architecture 10

2.5 Feature points of a chicken 13

2.6 Chicken-pose estimation process 14

3.1 Command of installing DLC-GUI 18

3.2 Commands to launch the DLC-GUI 19

3.3 A frame of a video from the dataset 20

3.4 Original and flipped frame of the same video 22

3.5 New project interface 23

3.6 Newly created project folder 24

3.7 Labelling convention used for chicken 25

3.8 Colormap options 27

3.9 DeepLabCut labelling interface 28

3.10 Contents of labelled-data folder 29

3.11 DeepLabCut code for training dataset creation 30

3.12 Various effects of learning rate on loss 32

3.13 Default learning rate within the pose_cfg.yaml file 33

3.14 DeepLabCut code for network training 35

3.15 Example of the snapshot file 35

3.16 DeepLabCut network evaluation code 36

3.17 Output of DeepLabCut network evaluation code 37

3.18 Human labels plots against network predicted plots 37

3.19 Training loss equations 38

3.20 Human label against low confident network prediction 39

3.21 Human label against high confident network prediction 40

3.22 DeepLabCut code making keypoint prediction 40

3.23 DeepLabCut code for plotting keypoints trajectories 41

3.24 Trajectories plots 41

xii

3.25 DeepLabCut code for creating a video with predicted keypoints 41

3.26 Output video using the trained network 42

3.27 Project flowchart 42

5.1 Train pixel error across different networks 51

5.2 Test pixel error across different networks 52

5.3 Discrepancy test-train across different networks 52

5.4 Discrepancy test-train across the different splitting ratio 53

5.5 Discrepancy test-train across the different learning rates 54

5.6 Train pixel error across different custom models 57

5.7 Test pixel error across different custom models 57

5.8 Discrepancy test-train across different custom models 58

xiii

LIST OF ABBREVIATIONS

Abbreviation Meaning

GS Gait Score

PLF Precision Livestock Farming

DLC DeepLabCut

DL Deep Learning

DCN Deep Convolutional Network

CNN Convolutional Neural Network

NN Neural Network

MAE Mean Euclidean Error

HDF Hierarchical Data Format

SGD Stochastic Gradient Descent

FC Fully Connected

CM Custom Model

1

CHAPTER 1

INTRODUCTION

1.1 General Background

The future global meat consumption is predicted to increase by 70% by 2050 [1]

followed by a projection of over 9.96 billion people of the world population by the

year 2050. Hence, there is an increase in food security concerns which causes an

increase in agricultural production. Henchion et al. [2] reported that there is an

indication of increased consumption of poultry meat and poultry meat products, with a

projected increase within the next decade due to preferences for white meat [3]. The

growing demand has mostly been driven by urbanization and rising incomes in

developing countries[4]. Acceptable animal welfare conditions, animal health,

efficiency, and sustainable environmental condition have become more challenging to

fulfil due to the increasing amount of chicken production [1]. Poultry flock welfare is

usually assessed through mortality physiology, behaviour, and walking ability [5].

Walking ability or lameness is one of the common traits that can be used to

determine the welfare of poultry [6]. Lameness is a word used to describe a range of

injuries with infective and non-infective sources experienced by the poultry [7].

However, Aydin [6] stated that lameness can also be said as poultry’s ability to run.

Lameness in poultry is usually ranked by trained farmers and veterinarians using a gait

score system. Gait score zero (GS0) would mean that there is no detectable

abnormality, fluid locomotion, and furled foot when raised shown from the poultry

and gait score five (GS5) would mean that the poultry is in complete lameness, either

cannot walk or cannot support its weight on its leg. According to paper [8] and [9],

this procedure gives a basis for future management in welfare decisions. However,

using this technique visually on a large flock might lead to biased results since the

evaluation might vary between different individuals [10]

2

1.2 Problem Statement

In recent years, poultry disease outbreaks have occurred frequently, and this is leaving

a bad impact on the poultry industry. Currently, the conventional method for

monitoring poultry disease is mainly carried out by manual observation of poultry

posture, feathers, cockscombs, faeces, and sounds [11]. The problem with manual

observation is, in large-scale production, it requires many people to perform regular

inspections, which is both time-consuming and labour-intensive and this will make it

harder to detect sick poultry at an early stage [12]. Hence, human surveillance has

ceased to be a viable solution in livestock farming [13]. Precision Livestock Farming

(PLF) has been used to solve these challenges by using efficient automated systems

while at the same time maintaining animal welfare [14].

1.3 Proposed Solution

With the advancement of artificial intelligence and specifically in the branch of the

deep convolutional network, this paper proposed an automated system that could

detect the poultry’s body keypoints using a deep convolutional network. Obtaining the

body keypoints of poultry is a crucial step in developing an automated system that

could detect the poultry's mobility or posture. However, this paper is focusing on

posture estimation rather than mobility due to the type of data that could be gathered

(will be further discussed in Chapter 3).

1.4 Objectives of the Research

Below is the list of objectives for this paper.

i. To produce a poultry dataset that is annotated with the body keypoints.

ii. To propose a deep learning model that can detect the keypoints of a poultry

on a video.

iii. To compare the accuracy of the proposed models to other models with

different hyperparameters and backbones.

3

1.5 Scope of Thesis

This part will explain the flow of this thesis which consists of six chapters that begin

with an introduction, literature review, methodology, observation & results, analysis

of result and general discussion, and conclusion & recommendation.

The first chapter serves as an introduction to the overall paper. This chapter

addresses the research's context, identifies the problem statement, defines the project

objective, and briefly explains the scope of work. This chapter aims to make it clear

about the significance of the problem and the research work outline.

The second chapter contains the summary of the literature review and the most

advanced methods used by other researchers that is related to this project. This part

will also discuss the Deep Convolutional Network alongside keypoint and posture

detection for both human and poultry applications, based on which the subsequent

work was done and the decisions that are made.

Chapter three review the methodology which will go through the type of

software used and how it was used followed by the data preparation, the Deep

Convolutional Network training process, the evaluation metrics of the trained network,

and finally, the flowchart of this entire project. This chapter aims to provide a detailed

guide that other researchers could use to replicate it. Lastly, this part will also talk

about the advantages and the limitations of the methods used.

Chapter four contains the details regarding the observation and results. In this

chapter the results presented are from a series of test that was done to find the best

hyperparameters that should be used to train the best deep convolutional network

model.

The purpose of chapter five is to evaluate and interpret the test results that are

presented in chapter four. Here is where the choices made for the final tuned

hyperparameters are further justified using the obtained results and the theory behind

4

the hyperparameters. This chapter also aims to discuss whether the final recommended

model of the tuned network has any significant improvement than the untuned

network.

Chapter six is the final chapter where the outcomes of this project are

summarized. This part will also present whether the findings and results obtained have

met the expectations and the project objectives. Finally, this chapter will also mention

the limitations of the study and ways that it can be further improved alongside the

possibilities and suggestions on future work that can be done by using the findings in

this study.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will highlight the importance and the role that keypoint detection had in

the human application and followed by relating it to the reason why keypoint detection

is a crucial part of poultry pose estimation with a further argument on the significance

of poultry pose estimation. This chapter will also briefly focus on deep Convolutional

neural networks (DCNN) and compare them to a normal Convolutional Neural

Network (CNN). Finally, this chapter will review a few related works that use

different artificial intelligence (AI) based methods to solve the problem statement

presented in chapter 1.

2.2 Keypoint Detection

2.2.1 Definition and human application

Keypoint detection in humans involves locating parts of human limbs, or facial

features. These parts help to represent the underlying object in a feature-rich manner

[15]. The common application of keypoint detection is pose estimation and facial

expression estimation. For any automated system that could do pose estimation on a

human would also mean that the system can do posture detection. In medical terms,

posture is the carriage of the body as a whole, the attitude of the body or the placement

of the limbs (the arms and legs) are all aspects of posture [16]. Human posture

detection enables the acquisition of the human body's kinematic properties, which is

useful in a variety of applications such as assisted living, healthcare, physical exercise,

and rehabilitation. Recent advances in deep learning and computer vision can

substantially aid this effort.

6

2.2.2 Significance of Poultry Pose Estimation

Based on the research process and the literature review of other common work (will be

discussed in section 2.3), there are two traits of all poultry that can be utilized to

develop an automated system that can determine the poultry health state, the first is

the poultry mobility or lameness which is usually judged by the ability of poultry to

walk, and the second trait is the posture that the poultry is displaying. This paper is

focusing on detecting the posture of a poultry chicken.

The process of determining the health of poultry by using its posture can be

simplified into three main processes. The first process is to detect the important

keypoints on the poultry’s body which then can be used in the second process where

the detected key points on the bird’s body is used to estimate the bird’s pose (standing,

preening, running, or sitting) and finally, this pose estimation can be used to predict

the bird’s health. The posture of poultry could describe the health of a poultry, most

used type of poultry in this paper is chicken, and sick chicken is often reluctant to

walk for very long and will isolate itself and displays a depressed bird look/posture

[17] and Figure 2.1 is showing a comparison image of the posture of a sick chicken (a)

and a healthy chicken (b).

 (a) Sick chicken posture (b) Healthy chicken posture

FIGURE 2.1 Posture comparison of sick and healthy chicken

7

2.3 Deep Learning

2.3.1 Convolutional Neural Network

Convolutional Neural Network (CNN/ConvNet) is a class of Deep Learning

algorithms used to evaluate visual imagery by assigning relevance (parameters:

learnable weights and biases) to various aspects/objects in the image and using those

parameters to distinguish between the different classes of object. One of the

differentiating factors between CNN and other Deep Learning algorithms is that CNN

makes use of a technique called Convolution. Convolution is a mathematical operation

on two functions that yields a third function that explains how the shape of one is

changed by the other [18]. Figure 2.2 is a typical architecture of a CNN.

FIGURE 2.2 Typical architecture of CNN [19]

The architecture of a CNN is inspired by the structure of the Visual Cortex and

is akin to the connectivity pattern of Neurons in the Human Brain. Individual neurons

can only respond to stimuli in a small area of the visual field called the Receptive

Field [20]. Several similar fields can be stacked on top of each other to span the full

visual field. A CNN network starts with an image as input then it passed sequentially

into convolutional, pooling, and fully connected (FC) layers. The convolutional layer

contains a set of filters (or kernels) and the learned parameters during the training

process. When the images convolve with each filter, it creates an activation map [21].

The pooling layer has a function that plays a role in reducing the spatial size of the

8

convolved features and this is to reduce the amount of computing power needed to

process such data. The fully connected layers are the last few layers of the network,

this layer performs classification tasks using the features collected by the previous

layers.

2.3.2 CNN in Keypoint Prediction

CNN architecture for object classification is slightly different than the CNN

architecture used for a keypoint prediction task. As an example, in DeepLabCut (a

method used in this project, which will be further discussed in chapter 3) uses a

combination of normal object classification CNN and a deconvolutional layer. Unlike

normal object classification CNN that have a classification layer (such as the Fully

Connected layers in Fig. 2.2) at its output, it was replaced with deconvolutional layers

(opposite of convolutional layers) that are used to generate spatial probability

densities, which represent the probability of the body being in a particular position.

Figure 2.2 is showing the architecture of Resnet-50 (a variant of a CNN) with a

deconvolutional layer at its output.

FIGURE 2.3 Deconvolutional layer and CNN

9

2.4 Related Work

A few theories and methods were mentioned in this section to have a better

understanding of how deep learning or machine learning can help in determining the

health status of poultry chickens. This section presents a posture and mobility

evaluation to provide a technique for distinguishing healthy and sick birds. To monitor

poultry welfare, posture, and mobility analysis is the common method as this will

determine the poultry lameness and then enable us to determine their health. In some

chicken farms, it has been detected that around 27% of the chicken showed poor

movement and 3% of chickens were unable to move [10]. When a chicken is having

locomotion problems, the bird will have low mobility and this will increase the

chances of that bird having other problems such as chest soiling [22].

2.4.1 The Problem with Detecting Poultry

The advancement of computer vision and deep learning in the past decades has

resulted in deep learning being applied more and more in animal analysis research. In

some animal posture studies, some additional markers are usually placed on the

animal to enhance the recognition precision [23]. However, with the precision that

these markers provide, this type of system is expensive and distracts animals because

they are invasive. Cameras are the common tool researchers used for monitoring the

diet status, behavioural habits, and physiological changes of poultry in real-time [24].

Cameras have the advantage of not being invasive which reduces their impact on the

animal’s life.

The difficulty of poultry monitoring is in the foreground detection which

causes by the complex background, variations in illuminations and, occlusion

problems in a real poultry farm environment. When the colours and the texture of the

foreground and background are similar, it is hard to segment the chicken from the

background. Zhuang et al. [25] stated that early warning of changes in the health status

of the chicken has always been a difficult challenge for research. Due to the nature of

10

the chicken that tends to stay densely stocked and like to gather very closely to each

other, it is very difficult to accurately detect each chicken. Hence, it is hard to judge

their health status if detecting them is a problem.

2.4.2 Deep Learning Technique to Detect Poultry Chicken

Convolutional Neural Network (CNN) is one of the most used deep learning

architectures in digital image processing. It is commonly used in object detection and

classification task in computer vision. CNN is a multi-layered network that can learn

features of a target to perform an autonomous detection. It comprises several neural

layers: convolutional, non-linear activation layer, pooling, and fully connected layers.

Thus, resulting in the mapping of an input to a 1D feature vector. Figure 2.4 presents

the general structure of CNN architecture [26].

FIGURE 2.4 Convolutional neural network architecture [26]

11

Sergeant et al. [11] proposed a poultry tracking system based on pixel

information by segmenting the outline of the broiler chicken and using the centroid

segmentation algorithm. However, such a method may be hard in a dense environment

where the broiler gathers very close with each other. Fang et al. [27] use the Tbroiler

tracking algorithm to track a single chicken in a flock and analysed the related

indexes, such as the overlap rate (OR) and the pixel error (PE). Various classical

CNNs can be used in classification, such as VGGNet, Google Inception Net,

NASNetMobile, ResNet, and Xception [28]. These methods provide the scope for

deep learning solutions to judge the health status of broilers [12].

Single Shot MultiBox Detector (SSD) is designed for object detection in real-

time. Faster Recurrent Convolutional Neural Network (Faster-RCNN) uses a region

proposal network to create boundary boxes and utilizes those boxes to classify objects

and it is considered excellent in terms of accuracy. However, it runs at 7 frames per

second which is far below what real-time processing needs [29]. SSD speeds up the

process by eliminating the need for a region proposal network. Each bounding box can

be identified as to whether it is a target or not, and regression can be used to find the

exact location [12]. Using multi-scale features SSD has the advantage of being able to

detect, identify targets in real-time and performs very well with overlapping targets,

but the detection of small targets such as broiler chicken is not ideal.

Zhuang and Zhang [12] introduced a target detection algorithm called

Improved Feature Fusion Single Shot MultiBox (IFSSD) to classify healthy and

suspected sick chickens. IFFSD uses FSSD, where FSSD concatenates the features at

each level and generates the feature pyramid network (FPN) while SSD only predicts

the features directly at various levels and there is no connection between each level.

One of the ways Zhuang and Zhang improved the FSSD is by adding the PASCAL

VOC2021 dataset [30] containing 17,125 images as background images for training

and to reduce the false recognition rate and improved the robustness of recognition.

The detector could detect broilers and their health simultaneously at mean average

precision (MAP) of 99.78%.

12

2.4.3 Methods of Detecting Sick Poultry

2.4.3.1 Machine learning method

The study on poultry mobility done by Nääs et al. [5] uses a machine learning

approach to judge the health status of the poultry chickens based on their mobility. In

the author’s research, the birds were separated by their Gait Score (GS) to represent

the ranges of scores, and a video recording was made. The pre-defined scores aim to

be able to study the various ranges of chicken mobility. The birds were stimulated to

walk on the specially built platform and the background of the recording video was a

blue wall to provide a contrasting background from the birds. The video signals were

then converted to an image and the centroid of the chicken body was determined. The

distance moved by the broiler’s centroid between a pair of consecutive frames was

used to calculate the broiler speed, velocity, and acceleration. The analysed videos

formed a matrix database that is used in data mining analysis.

2.4.3.2 Deep learning method

For a deep learning approach, Fang et al. [31] used deep neural networks to estimate

the pose of the chicken to determine its behaviour classification. Accurate pose

estimation is important for poultry behavioural analysis, and it is also able to provide

an early warning method to poultry disease. First, the researchers created a map of a

broiler chicken pose skeleton. As seen from Figure 2.5, there are ten custom feature

points in this pose skeleton. Point 1 is the centre point of the broiler chicken [25].

Point 2 is the tail point, point 7 and 8 is the left and right eye, point 9 is the highest

points of the comb, and point 10 is the tip of the beak. Points 3 and 4 represent the

knee point and it is also the dividing points of colour between the legs and the

feathers. Points 5 and 6 are heel points which are the joints of the phalanges.

13

FIGURE 2.5 Feature points of a chicken [27]

The experiment was done with four K90 broilers (between 40 and 50 weeks

old) in an area of 4 m × 3 m to ensure that the broiler chickens have enough space for

free movement while the videos were taken. A broiler chicken is feeding through and

a set of water tanks within that area. The system consists of a high-definition video

camera and a computer. Captured images were transmitted to a computer via a serial

bus (USB) port for pose estimation and behaviour classification.

The process of chicken-pose estimation introduced by Fang et al. [31] is shown

in Figure 2.6. In (a) the region of interest (ROI) in the training images were extracted

including the posture of the broiler chicken. (b) showed that the feature points of the

chicken body parts were marked as ROI and these features are as discussed and

mentioned in the first paragraph of this section and the features points are as shown in

Figure 2.5. The image and the coordinate of the marked points were then sent to the

network to train the algorithm. Part (c) showed that, to the prediction of the position of

14

the chicken body part, the pre-trained ResNet-50 is used. ResNet-50 is a 50-layer

residual network, and its parameter is obtained by pretraining on ImageNet. In (d), the

spatial probability density is obtained by sampling the chicken image information

using a deconvolutional layer (DL). The result is a trained network that can extract the

locations of the different feature points from the test video.

FIGURE 2.6 Chicken-pose estimation process [31]

2.3.4 Related Work Conclusion

The deep learning technique to detect poultry mentioned in section 2.4.2 is to address

the problem that is presented in section 2.4.1 related to how the poultry chicken is

usually gathering closely to each other in a real farm environment. In my opinion, the

machine learning method proposed by Nääs et al. [5] in section 2.4.3.1 is suitable to

detect the mobility of the chicken and classify their health in a controlled environment.

However, in a real farm environment, the machine learning method mentioned is

unsuitable because there is no confirmation that the poultry will walk through the

specially built platform as in the method in section 2.4.3.1. Therefore, for a real farm

environment, the deep learning method as in section 2.4.3.2 as proposed by Fang et al.

15

[31] is much more suitable. This is because the deep learning method can estimate the

pose of the chicken and its behaviour classification rather than having to analyse the

movement of the bird which will require a clear movement of chicken recorded on the

camera to calculate its speed, acceleration, and velocity like the method mentioned in

2.4.3.1 rather than just having a video of a chicken doing a certain pose. Hence, this

paper is focusing on a deep learning technique called deep convolution network to

estimate the pose of poultry chicken by the means of keypoint detection.

16

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter reviews the methods in detail which will start with the software that was

used, how such software was installed or accessed, and how the software is relevant

for this study. This chapter will also specify how the data was gathered, what

manipulation was done to the data, and how the data is used. This followed by an

explanation of how the artificial intelligence part of this project which is the Deep

Convolutional Network (DCN) was trained and what parameters were changed to

fine-tune it based on the type of dataset that was gathered. Lastly, this chapter will

present the available methods that are used to evaluate the performance of the trained

network and followed by the method used for inferencing using the trained network.

3.2 Software Used

3.2.1 DeepLabCut

DeepLabCut (DLC) is an open-source toolbox for a robust approach of 2D or 3D

markerless pose estimation of animals performing a variety number of tasks by

utilizing deep neural networks with transfer learning. DeepLabCut, developed in the

year 2018 by Mackenzie and Alexander Mathis, a married couple of neuroscientists.

DeepLabCut is essentially a tweaked version of DeeperCut, a neural network

algorithm developed by other researchers to detect and label human poses in videos

[32]. DeeperCut is good at detecting human poses as it was trained on thousands of

hand-labelled frames.

However, to predict the label on a different species, the training state must be done

from the start again. Hence, what the Mathises has done is to tweak the DeeperCut and

pretrained it on ImageNet, which is a huge image database for image classification.

17

Now the DeeperCut algorithm is given a basic visual system that can tell apart

between different images such as a chicken and car. Now that it can tell apart from

different species of animal, the network is ready to recognize more specific body parts

of the animals and predicts its keypoints.

In this project, the DeepLabCut toolbox was used in two different methods to

achieve different goals. The first methods are by using the DeepLabCut graphical user

interface (GUI) to label the extracted frames from the collected video dataset which is

also the first objective of this project. The second way DeepLabCut was utilized is by

using its Python command to train and evaluate the deep convolutional network and

this is where the second and third objectives of this project are attempted to be met.

The reason for choosing DeepLabCut instead of training a deep neural network

from scratch is because DeepLabCut is beginner friendly as it provides a clear and

comprehensive pathway on how to tune the deep neural network that is supported by

DeepLabCut and how to adapt it to the type of dataset that is relevant to this project.

Even so, that does not mean DeepLabCut is the perfect tool and without its limitation.

The main trade-offs are that because of the tight integration between each step of

training the deep neural network, only a limited number of the deep neural network is

supported, and it is also lacking in the ability to modify the layers of the deep neural

network itself which could be a huge drawback for seasoned deep learning engineer.

3.2.1.1 GUI installation with Anaconda environments

To install the DeepLabCut graphical user interface (GUI), the installation was done

through Anaconda virtual Environment as recommended by the developer of

DeepLabCut itself. Anaconda is a Python package built by Continuum Analytics that

comes preloaded with several major Python libraries that is related to data science

task. The main benefit of installing DeepLabCut GUI through Anaconda is because

Anaconda enables the creation of an environment that is isolated and not affected by

the operating system or the administrative libraries of the local hardware which could

18

cost compatibility problems between the different Python libraries [33]. The

Anaconda environment can be downloaded directly from any browser.

 The compatibility problem mentioned did happen initially when installing

DeepLabCut directly from the command prompt of the local personal computer.

However, by using Anaconda environments, such a problem was overcome. The

DeepLabCut GUI is only used in this project for frame extraction and keypoint

labelling purposes. The training and evaluation process can be done using the GUI

itself but with limited features lacking such as the hyperparameters manipulation.

The version of DeepLabCut GUI installed on the Windows 10 personal

computer is the central processing unit (CPU) version as the personal computer used

for this project is not equipped with any supported graphic processing unit (GPU). The

commands shown in Figure 3.1 are run on the anaconda prompt (already pre-installed

with Anaconda) is to install the DeepLabCut GUI. Figure 3.2 is the set of commands

used to get into the DeepLabCut environment and launch the GUI from the Anaconda

Prompt. From Figure 3.2, we could see that before entering the DeepLabCut

environment, on the topmost left side of the terminal, within the bracket is showing

the word base, which would mean that the system is not yet entering the DeepLabCut

environment. Based on Figure 3.2, after activating the DeepLabCut environment the

word base will change into DeepLabCut to indicate that the system has entered the

DeepLabCut environment, and only after entering this environment the DeepLabCut

GUI can be launched.

C:\Users\hamir>cd desktop

C:\Users\hamir\Desktop>cd dlc

C:\Users\hamir\Desktop\dlc>git clone https://github.com/DeepLabCut/DeepLabCut.git

C:\Users\hamir\Desktop\dlc>cd DeepLabCut/conda-environments

C:\Users\hamir\Desktop\dlc\conda-environments> conda env create -f DEEPLABCUT.yaml

FIGURE 3.1 Command of installing DLC-GUI

19

FIGURE 3.2 Commands to launch the DLC-GUI

3.2.2 Google Colab Pro and Google Drive

Google Colaboratory or also known as Google Colab is a product of Google’s

research with Jupyter notebook. Google Colab is a cloud computing service that is

allowing developers, students, or researchers to build and run Python programmes

directly from their browser. The first reason that Google Colab is an excellent

platform to code from is that many widely used machine learning libraries are

supported or pre-installed by Colab and can be easily loaded into the notebook and

most importantly Google Colab will also support the DeepLabCut library. The second

advantage of using Google Colab, for a deep learning project that works with a large

amount of data such as this project, Google Colab can work with all the saved files in

Google Drive, and because of this feature both codes and the data is safe and easy to

backup and restore in the case of saving error. Finally, the biggest advantage of using

Google Colab is having the ability to utilize Google graphic processor unit (GPU) for

training the model which is also the recommended way to train the network by the

developer of DeepLabCut.

The reason that GPU is better at training a deep learning network than the CPU

is that the GPU is better at parallel computing when compared to the CPU [34].

Parallel computing is a type of computing architecture in which numerous processors

work together to do a series of smaller tasks that are broken down from a bigger, more

difficult problem, and this is crucial when training a deep convolutional network with

a large amount of data. However, using Google Colab does have a few drawbacks

20

such as every time starting a new test or session, the DeepLabCut library must be re-

installed albeit with a single line of code. The biggest drawback when using Google

Colab is that users can only stay connected to Google’s computing resources such as

the GPU and the runtimes with the maximum duration of 24 hours for the paid version

called Colab Pro (the version that was used for this project).

3.3 Dataset Preparation

3.3.1 Data Gathering

The type of data that is needed to train a keypoint detection AI that uses a deep

convolutional network is in the form of a short video of poultry and the type of poultry

that this paper is focusing on is chicken. This is because out of all available poultry

meat sources such as turkey, duck, quail, and many others, chicken is the most

consumed poultry meat [35]. The attribute of this short video is that it would mainly

consist of one main chicken in a frame and this chicken will do various kinds of poses

such as roaming, pecking, or scratching. Before the augmentation process, a total of

19 short videos were gathered that are well-suited with the attributes that were

mentioned beforehand. These short videos were collected from various websites

available online such as Pixabay, Pexels, YouTube, and Shutterstock. Figure 3.3 is

showing a frame of a video that was obtained from Pixabay.

FIGURE 3.3 A frame of a video from the dataset

21

3.3.2 Data Augmentation

Data Augmentation is a term that refers to a range of measures for expanding the size

or quality of training datasets so that robust Deep Learning models can be generated

using them [36]. Without data augmentation, only 19 short videos were gathered and

from these 19 short videos only 20 frames (default number that the software in the

next section will use) from each video will be used and that will total to 380 frames

that are available to use for training. Do note that, the Deep Convolutional Network

only uses frames that are extracted from each video in the dataset and not the video

itself. When comparing the number of frames that is available for this paper to one of

the works that were in the literature review, C. Fang et al. [31] uses 556 frames and

only use five to six frames from each video, and with that, it is clear that without data

augmentation, this project video dataset is small and not diverse. The meaning of not

diverse here is when the deep convolutional network was trained using too much

frame from the same video which would cause the deep convolutional network to

recognize a smaller pool of features.

If this project were to follow C. Fang et al. [31] number of training frames per

video, this project will have a significantly lower total number of frames that are

available to train the deep convolutional network. Hence, the dataset of this project

must go through an augmentation process to expand the number of videos available

which would mean an increase in the total number of training frames while also

decreasing the number of frames per video needed to be used for training to increase

the diversity of the dataset and increase the pool of features that the network could

recognize. One augmentation process that is relevant to the type of content that the

video dataset of this project has, is the horizontal flipping process and this process is

done manually using an online tool accessible from any browser called Animaker.

Flipping the image protects the image's features while rearranging the pixels [37].

With the augmentation process, the video dataset was increased from 19 to 28, and not

all videos undergo the flipping process. Figure 3.4 shows two frames that were

extracted from an original and a flipped of the same video that is in the video dataset.

22

(a) Original frame

 (b) Horizontally flipped frame

FIGURE 3.4 Original and flipped frame of the same video

3.3.3 Labelling Data

3.3.3.1 Creating project

 The data was labelled using the DeepLabCut (DLC) graphical user interface (GUI)

which was mentioned in section 3.2.1.1. However, before the labelling process, the

first step of using the DLC GUI is to create a project by filling in the details needed to

create the project. The DLC interface when creating a project is shown in Figure 3.5

alongside an example of the needed details that are already been filled in. The details

needed to create a project using the DLC GUI would be the name of the project, the

name of the experimenter (the labeller), and the directory file where the project (the

labelled frames) would be saved at.

23

FIGURE 3.5 New project interface

It is also important to note that this is the point where the collected short

videos of poultry are selected into DeepLabCut and from the example shown in Figure

3.5, 25 videos were loaded onto DLC. The checkbox for multi-animal detection is left

unchecked as this project is only focusing on single animal detection and the box for

copy video is checked for ease of use when inferencing. When the project is created

successfully, the project file will contain four folders and one configuration file as

shown in Figure 3.6. The dlc-models file in Figure 3.6 is where the trained network

alongside the trained weights and parameters is saved, the labelled-data and the

training-datasets file is where the extracted frame is saved and where the dataset is

split into training and test dataset respectively. The project file will also copy the

selected videos from the dataset into the project folder so that it is easier to access the

videos later for the inferencing process. Lastly, the config file is where the crucial

parameters related to the training process and the dataset label can be manipulated.

24

FIGURE 3.6 Newly created project folder

3.3.3.2 Labelling convention and tool

After the project is successfully created, a few parameters are within the config.yaml

file were changed to adapt for this project dataset. The config.yaml file contains and

determines the different parameters for creating the training set file and evaluation

results. A few parameters that were changed and that are relevant to the dataset

creation are the numframes2pick bodyparts, skeleton, and the description of these

important parameters is shown in Table 3.1.

TABLE 3.1 Parameters1 of the config file

Parameters Description

numframes2pick An integer that specifies the number of frames extracted from each video in the

dataset. The default is 20.

bodyparts A list containing the points to be tracked.

skeleton The connection between each tracked body part.

colormap The colour scheme of each tracked body part.

dotsize The size of the marker when labelling. Default value is 12.

alphavalue The transparency of the plotted labels. Default value is 0.5.

TrainingFraction Two-digit floating-point number in the range [0-1], the ratio used to split the

dataset into train and test. Default value is 0.95.

default_net_type Specifies which pre-trained model to use. Default value is Resnet-50

1 The complete list of parameters of the config.yaml file and its description is included in Appendix

A.2.

25

The first important parameter that is changed is the numframes2pick, which

specifies the number of frames to be extracted from each video in the dataset. As

mentioned in the section about the data augmentation (section 3.3.2), the lower the

number of frames used from each video while also maintaining the quantity of the

total number of frames used for training will make the dataset more diverse which

would help the deep neural network to recognize a larger pool of features. Hence, this

parameter (numframes2pick) that was used in the series of the test presented in the

next chapter is lower than 20 which is the default number set by DeepLabCut.

The next two related crucial parameters for the dataset preparation are the

bodyparts and the skeleton parameters. The bodyparts parameter within the config file

specifies the bodyparts that this project is tracking. This project is tracking five main

body parts of poultry chicken which are the center body of the chicken, the head, the

tail base, the left, and the right leg. If we were to compare the number of feature points

tracked by Fang et al. [31] in their paper which is 10 (see Fig 2.3 from chapter 2), they

are tracking double the feature points that are tracked by this project. Figure 3.7 is

showing how the tracked body parts were labelled for this project.

FIGURE 3.7 Labelling convention used for chicken

26

The reasoning behind choosing a significantly lesser number of feature points

to track in this project is because this project has significantly less resource in terms of

the available dataset and time constraints to properly hand-labelled those feature

points for each extracted frame than compared to the resource available (especially in

the number of personnel available to assist in hand-labelling the dataset) in the paper

mentioned earlier [31]. The main risk if this project were to follow the paper

mentioned earlier is that, without any access to an expert that can accurately identify

the various body parts of poultry in a variety of backgrounds and postures, there is a

risk of labelling inconsistency which may contribute to higher error in predicting the

location of the chicken’s body keypoints. Thus, this project is tracking only the body

parts of the chicken that is easy to identify and label.

Table 3.2-3.3 is showing the differences between the default and the custom

parameters that were used to replace the default parameters for both bodyparts and

skeleton. The custom parameter for the bodyparts in Table 3.2 is how the body parts

of the chicken that this project is trying to track were defined. The custom skeleton

parameter shown in Table 3.3 is how the connection between the different body parts

of the chicken was defined. The skeleton parameter is providing the deep neural

network the information on how each of the tracked body parts is connected. Do note

that both the dotvalue and alphavalue parameter were not changed and remained at the

default value as stated in Table 3.1 earlier while the colormap parameter that was

commonly used in this project is rainbow and plasma, the colormap parameter is the

parameter that specifies the colour scheme of each label for each body parts (see Fig

3.8). However, for the TrainingFraction (a value that specifies the splitting ratio

between the train and test dataset) and the default_net_type (the pretrained network

that was used) parameter is dependant on the case of each test that was done and

presented in chapter 4. For each series of tests, the TrainingFraction and the

default_net_type parameter that was used will be specified and justified based on the

different aims of each test.

27

TABLE 3.2 Parameter for bodyparts

Default bodyparts Custom bodyparts

bodyparts:

- bodypart1

- bodypart2

- bodypart3

- objectA

bodyparts:

- center

- head

- tail

- leftleg

- rightleg

TABLE 3.3 Parameter for skeleton

Default skeleton Custom bodyparts

skeleton:

- - bodypart1

 - bodypart2

- - objectA

 - bodypart3

skeleton:

- - center

 - head

- - center

 - tail

- - center

 - leftleg

- - center

 - rightleg

FIGURE 3.8 Colormap options

To prepare the dataset, DeepLabCut will extract a certain number of frames

from each video in the dataset based on the numframes2pick that was specified within

the Config file and labelled individually using the DeepLabCut labelling GUI. The

labelling interface that was used for this project is shown in Figure 3.9. To label a

frame, the cursor is placed at the point of the chicken’s body that is itended to be

marked followed with a right click of mouse, this will place the cursor at the intended

point and to adjust to position of the marker, the marked point can be drag by holding

28

the right click of the mouse onto the desired point. The sequence of labelling the

chicken’s body parts is following the custom bodyparts parameter that is stated in the

Config file (see Tab 3.2).

 After finishing the labelling process on one frame, the same process is

repeated for the remaining extracted frames by clicking the next button shown in the

GUI (see Fig 3.9) and when frames from one video are done the process is to move

onto the next frames of another video until all the frames from all the loaded training

video are done being labelled. From the labelling GUI, there are a few tools and

features that were used to assist the labelling process such as the zoom and pan feature

which is useful when trying to be very accurate when placing the label onto the

chicken’s body. When the labelling process is done, the folder within the project file

(as in Fig. 3.6) named labeled-data will contain multiple folders according to the

number of videos used and within the video folder, it will contain the extracted frames

in .png format, the coordinate of the labelled marker in an excel sheet and a .h5 file

which is a Hierarchical Data Format (HDF) which contain multidimensional arrays

data on the labelled markers (see Fig. 3.10 for of example of the labelled dataset

folder). Finally, the entirety of the project folder is exported onto Google Drive to

work with Google Colab.

FIGURE 3.9 DeepLabCut labelling interface

29

FIGURE 3.10 Contents of labelled-data folder

Before initiating the Google Colab notebook, a few Pythons third-party

libraries must be installed such as the DeepLabCut, TensorFlow, and OpenCV library

followed by changing the runtime type to connect to Google’s GPU and finally, the

Google Colab must be connected and mounted to the Google Drive where the project

folder (as in Fig. 3.6) is exported. To view the necessary installation, and the proper

method to summon the project folder alongside the method to connect Colab with

Google Drive, view this GitHub2 repository created for this project to avoid cluttering

this thesis with installation codes. After all, the needed library is installed and the

project folder configuration is done, the DeepLabCut code shown in Figure 3.11 is

where the labels from the extracted frames are merged into a single .h5 file, and do

note that only videos that are included within the config.yaml (as in Fig. 3.6) is used to

create this dataset, the code in Figure 3.11 is also where the frames dataset is split into

train and test datasets, and the frames are chosen randomly based on the

TrainingFraction parameters (as in Table 3.1) that are stated within the config.yaml

2 The necessary installation and folder configuration: https://github.com/amrhkm/POULTRY-POSE-

DEEPLABCUTV2/blob/main/startingwith_DeepLabCut.ipynb

The dataset is also available to be accessed by the public, see Appendix B.1

30

file. Using the code in Figure 3.11, conversion is also done to the dataset to make it

compatible with a Unix system (Google Colab) and during this process, the pretrained

network that is intended to be used (as an example in Fig 3.11, pretrained Resnet-101

is downloaded) is downloaded to prepare for the training process using the training

dataset created earlier. To conclude about the dataset, the creation of this poultry

keypoints dataset is to fulfil the first objective of this project, which is to prepare a

dataset that is annotated with the poultry’s body keypoints.

FIGURE 3.11 DeepLabCut code for training dataset creation

3.4 Training the Deep Convolutional Network

3.4.1 Transfer Learning

Transfer learning is the main method that is adapted for this project, transfer learning

is a deep learning method that is repurposing an already developed deep learning

model (done by other researchers), created and trained to work on a specific task to

work on a different set of tasks that then what it was intended to do (this project). This

project can be classified as a computer vision task and to be able to develop a

competent deep convolutional neural network from the ground up will require a lot of

time resources, computing power, data, and most importantly the knowledge and skills

needed to tune and modify those deep neural network layers.

Paper [38] stated that in deep learning, transfer learning only works if the

model features learned in the first task are general and all of the supported models by

DeepLabCut that is used in this project are all pretrained on a general dataset called

ImageNet that contains over 14 million annotated image with 1000 different classes.

31

By training the supported model using the ImageNet dataset, the robustness of the

supported models is increased and this is further supported in paper [39], which uses

DeepLabCut to estimate the pose of horses. The paper mentioned earlier [39], has

done a test that shows using DeepLabCut with a pretrained model is more robust and

resulted in less error than the ones that are trained from scratch. In this project, three

pretrained models or network that is supported by DeepLabCut is tested to find the

suitable network that can detect keypoints on a chicken (results are presented in

chapter 4, test 4.2).

3.4.2 Hyperparameters

Hyperparameters are configuration variables whose values will determine how the

network is trained and these values are required for estimating the model (network)

parameters. The prefix hyper is to show that they are the 'top-level' parameters that

control the learning process and the model parameters that come from it.

Hyperparameters are external to the model as the values are not saved within the

model and these hyperparameters must be set manually before the training process,

hyperparameters are independent of the dataset as the hyperparameters are not learned

from the dataset. The chosen hyperparameters will determine the speed and the

accuracy of the training process and to obtain the most suitable hyperparameters, the

values are estimated through hyperparameters tuning and in this project, the

hyperparameters are tuned through a series of trial-and-error tests (presented in

chapter 4) and the default values of the hyperparameters that were set by DeepLabCut

is used as a reference point on improving the model.

3.4.2.1 Learning rate

The learning rate is a hyperparameter that governs how quickly a model updates its

parameters in response to the expected error. A very low learning rate may result in a

long training process as it will need more training iterations which will also consume

more memory capacity resources with a risk that the training process may become

32

stalled, whereas a value too large may result in learning a set of weights too fast which

could cause an unstable training process [40]. Thus, finding a suitable learning rate is

crucial and challenging. Figure 3.12 is presenting the different scenarios that are

possible when configuring the learning rate parameter.

FIGURE 3.12 Various effects of learning rate on loss [41]

Within DeepLabCut, to alter the default pre-set learning rate, it must be done

through a text file named pose_cfg.yaml located within the train subdirectory within

the dlc-models directory of the project folder (as in Fig. 3.6). The pose_cfg.yaml file3

contains some parameters that control the training process of the network. Figure 3.13

is showing how the learning rate is stated within the pose_cfg.yaml file and Table 3.4

is showing the meaning of the learning rate parameter that is shown in Figure 3.13.

From Table 3.4 the default learning rate set by DeepLabCut changes continuously

based on the current training iterations until around one million training iterations.

Hence, a custom learning rate is tested (results in chapter 4.4) to find the suitable

learning rate based on the network and the training iterations used for this project.

3 The full available parameters within the pose_cgf.yaml file is shown in Appendix A.3

33

FIGURE 3.13 Default learning rate within the pose_cfg.yaml file

TABLE 3.4 Default dynamic learning rate

Learning Rates Training iterations range

0.005 0<iterations<10,000

0.02 10,001<iterations<430,000

0.002 430,001<iterations<730,000

0.001 730,001<iterations<1,030,000

3.4.2.2 Train-test split ratio

The train and test splitting ratio determines how much of the total dataset is used for

training and testing and after splitting these datasets, there would be a training dataset

and test dataset. The training dataset is fed into the pretrained model for the training

process and this training process is done to fit the pretrained deep convolutional

network model to the labelled chicken frames dataset. The test dataset is not used at all

during the training process which would mean that the pretrained model never learns

the features or the label from the frames that are in the test dataset.

The test dataset is only used after the training process has been completed and

during this process, all the updated parameters (such as the weights and biases) that

the network obtained from the training process is used to make keypoints prediction

on the test dataset and the accuracy of the model on the test dataset would present a

rough estimate on how accurate is the performance of the trained network/model

against new and unseen data which could also mean how accurate the model is for a

real-world environment implementation. In DeepLabCut the splitting ratio is

34

determined using the TrainingFraction parameter (as in Table 3.1) stated within the

config.yaml file and the commands used within Google Colab to split the dataset are

shown in Figure 3.11 earlier.

3.3.2.3 Training iteration

As mentioned earlier, this project is using transfer learning to make use of other

researchers' trained networks and adapt their networks to fit the objectives of this

project. Hence, the training process in this project is referring to the process where the

training dataset that is specific to this project is fed into the deep convolutional

network and during this process, the network will observe the labels and features

present in the training dataset and use the observed features to updates its pretrained

parameters such as their weights and biases to fit the task of this project. In layman's

terms, training is a process of finding the suitable weights and biases that are good for

the task.

Weights and biases are called deep neural parameters which are different from

hyperparameters. Parameters are internal to the network and the value of these

parameters is not set manually and unlike hyperparameters whose value will stay the

same throughout the entire training process, parameters are learned and are constantly

updated during the training process through each training iterations. The parameters,

unlike the hyperparameters they are dependent on the dataset, and the final value of

these parameters will determine the performance of this network on unseen data (test

dataset or real-world application).

In DeepLabCut, the term one training iteration would mean a cycle where the

network has seen (learn its features and label) all the frames within the training dataset

once. The number of iterations said by the developer of DeepLabCut where the loss

will start to converge (when the loss has plateaued) is more than 200,000 to 400,000

iterations [42]. Hence, this project used the range of the number of iterations said by

the developer of DeepLabCut where the loss will start to converge. To train the

pretrained network with the labels in the training dataset, the command in Figure 3.14

35

was run on Google Collab and the number of iterations used is based on the aim of the

test presented in chapter 4. The full available parameters for the codes in Figure 3.14

are available in this GitHub repository4 under the network training section. During the

training process snapshots of the current iterations are automatically uploaded into the

training subdirectory of dlc-models file (as in Fig 3.6).

FIGURE 3.14 DeepLabCut code for network training

These snapshots contain the current state of the trained network parameters at a

particular training iteration (see Fig 3.15 for the example of the snapshot file at

training iteration 300,100) and because this project was saved in Google Drive that has

a limit to the number of memories it can store, only the 10 most recent training

iterations snapshots are saved within the dlc-models folder and the rest is transferred

to the bin. Some of the useful snapshots that is in the bin were restored to project

folder for the evaluation process. These snapshots are crucial for evaluating the

network performance at a certain training iteration (as the test presented in chapter 4).

FIGURE 3.15 Example of the snapshot file

4 Parameters of DLC training code https://github.com/DeepLabCut/DeepLabCut/wiki/DOCSTRINGS#

36

3.5 Network Performance

3.5.1 Evaluation and the Metrics Used

3.5.1.1 Pixel error and confidence level

For object classification task using any variants of the neural networks (NN), the most

common metrics used to evaluate such network is accuracy and error and this easier to

do for a classification process because the ground truth for each object that the neural

network is tasked to identify is available [43]. However, for a keypoint detection task

on a video, such ground truth is hard to provide, and the only ground truth that this

project is able to provide is the individually manual label that is plotted onto the

chicken’s body on the extracted frames dataset. Hence, Using DeepLabCut, the main

way that the trained network was evaluated by computing its mean average Euclidean

error (MAE) or simply put, the average distances in pixels between the manual label

(the ground truth) that is done during the labelling process in chapter 3.3.3 and the

label predicted by the trained network [42]. This average distance between the manual

and predicted labels are called pixel error and this evaluation process was done to both

train and test dataset and therefore, there will be a pixel train error and pixel test error

for a network.

 Figure 3.16-3.17 is showing the DeepLabCut code that was used on Google Collab to

evaluate the trained network and the output of the code. If the plotting parameter were

set to true as in Figure 3.16, it will plot the network predicted label against the manual

label as in Figure 3.18 where the human label is plotted as (+), and the network

predicted label is plotted as a dot. Notice that in the output of the evaluation code there

is a parameter call p-cutoff, this parameter is called a confidence level threshold and is

used to increase the accuracy during inferencing and will be discussed in detail in

chapter 3.6.1.

deeplabcut.evaluate_network(config_path, plotting=True)

FIGURE 3.16 DeepLabCut network evaluation code

37

FIGURE 3.17 Output of DeepLabCut network evaluation code

FIGURE 3.18 Human labels plots against network predicted plots

3.5.1.2 Training loss

The training loss in DeepLabCut is using the standard cross-entropy loss function

shown in equation 1 of Figure 3.19 to predict the pixel-wise class probability and the

location refinement error (a form of location refinement for the final coordinate) via

Huber loss with a weight of 0.05 loss was used to regress predicted location to actual

location using equation 2 in Figure 3.19 with (δ = 1) [43]. These losses were combined

and optimized by Stochastic Gradient Descent (SGD) to obtain the tuned parameters

for a network that is suitable for a chicken’s body keypoint detection task.

38

FIGURE 3.19 Training loss equations [43]

3.6 Keypoints Prediction on a Video

This section will go into detail on the DeepLabCut codes and how DeepLabCut was

used to do the chicken’s body keypoints prediction for a video of a chicken (will work

with a video that is within the dataset or not) using the trained network. Using a

trained network to do prediction on a video that is not within the dataset (unseen data)

is called inferencing. Ideally, this project aimed to achieve a network that is good at

inferencing because if a network is good at inferencing this would make the network

even more suitable for a real-world environment which would add more value to this

study.

3.6.1 Confident level or likelihood

As mentioned in chapter 3.5.1.1, the main metrics used to evaluate the trained network

is the pixel error or the MAE, this MAE is saved alongside a parameter called a

confidence level or likelihood in a comma-separated file. The confidence level is a

positive integer value that is stating the level of confidence that network had in

making a particular keypoint prediction for each of the tracked chicken’s body parts.

The range of this confidence level value is starting from zero which is a very low

confident prediction to one which is a very high confident prediction. Using this

confidence level, DeepLabCut is showing its strength if the network is sufficiently

trained, it will have a probabilistic output of the scoremap that can be used as guide to

reliably report when a body part is visible within the frame [42].

39

From chapter 3.5.1.1 and Figure 3.17, there is parameter called p-cutoff which

is a confidence level threshold and by default this value is set to 0.1, this p-cutoff

parameter is available within the config.yaml file (see appendix A.2). This parameter

is used to increase the accuracy of the network by reducing the keypoint prediction

that has a low confident value. The way the p-cutoff parameter work is that if a

prediction has a confidence level higher than the P-cutoff (confident >p-cutoff) that

would mean that it is a confident prediction. However, if a prediction confidence level

is lower than the P-cutoff (confident <p-cutoff), that would mean that the prediction

has a low level of confidence. Hence, if a keypoint prediction has a confident level

below the p-cutoff, the network will eliminate the prediction thus reducing the pixel

error and during keypoint prediction on a video, the prediction with a confident level

below the p-cutoff will not be shown. Using the network evaluation code in Figure

3.17 we could see the differences between the network prediction that has a high

confident level and low confident level against the human label (see Fig. 3.20-3.21).

From Figure 3.20-3.21, the human label is in the plotted as (+) and the predicted label

that has high confident (confident > P-cutoff) are plotted as a dot (.) and the prediction

label that has lower confident level (confident < p-cutoff) are plotted as an (X).

FIGURE 3.20 Human label against low confident network prediction

40

FIGURE 3.21 Human label against high confident network prediction

3.6.2 Create Predicted Labelled Video

The code shown in Figure 3.22 was used to make keypoint predictions using the

trained network. The output of the code from Figure 3.22 is saved within the videos

file of the project folder (see Fig. 3.6) and the output is stored as a Multi-index Pandas

array that is stored in an efficient Hierarchical Data Format (HDF) which contains the

name of the network used, names of each tracked body parts, (x,y) label position in

pixels, and the confidence level for each frame per body part.

deeplabcut.analyze_videos(path_config_file, videofile_path, videotype=mp4)

FIGURE 3.22 DeepLabCut code making keypoint prediction

The code in Figure 3.23 is used to analyse the trajectories of the predicted keypoints

and the output of this line of codes is saved at plot-trajectories within the videos

folder. Using this line of code, the movement of the predicted keypoints throughout

the whole duration of the video is plotted onto an XY-axis (as in Fig. 3.24 (a))

alongside the confidence level/likelihood of each body parts throughout the entire

41

video timeframe (as in Fig. 3.24 (b)). Finally, to create a video using the keypoints

that is predicted by the trained network, the code in Figure 3.25 was used and an

example of a frame of the output video is shown in Figure 3.26.

deeplabcut.plot_trajectories(path_config_file, videofile_path, videotype=mp4)

FIGURE 3.23 DeepLabCut code for plotting keypoints trajectories

(a) Keypoint movements across frames

(b) Confidence level across the frames

FIGURE 3.24 Trajectories plots

deeplabcut.create_labeled_video(path_config_file,videofile_path,videotype=mp)

FIGURE 3.25 DeepLabCut code for creating a video with predicted keypoints

42

FIGURE 3.26 Output video using the trained network

3.7 Flowchart

The flowchart below acts as a summary of the entire methodology chapter of this

project.

FIGURE 3.27 Project flowchart

43

CHAPTER 4

OBSERVATION AND RESULTS

4.1 Overview

This chapter comprises the results achieved from carrying out a series of tests along

with a detailed explanation for each case hyperparameter that was changed. This

chapter aims to find the best hyperparameters (as discussed in chapter 3.4.2) and to

analyze and evaluate the performance of the trained network under certain

hyperparameters. This chapter will make use of the metrics and methods explained in

chapter 3.5.

4.2 Performance of Resnet-50, Resnet-101, and Mobilenet V2

Resnet-50, Resnet-101, and Mobilenet V2 is the pretrained network supported by

DeepLabCut. All three of the tested networks have a different architecture which

could be an advantage or disadvantage to the type of dataset this project is using.

Hence, this test aims to find the best-supported network that is suitable for the

chicken’s keypoint detection task of this project. To find the best performing network,

a few hyperparameters were set constant throughout all three networks.

Below are the hyperparameters that were constant across all three tested

networks and the result for this test is presented in Table 4.2-4.4. All three of the

tested networks were evaluated at three different training iterations which are at

100,000, 200,000, and 300,000 iterations. Used 80% of the frame dataset for training

and 20% for testing from a total frame of 256 frames. Used Stochastic Gradient

Descent (SGD) as default network optimizer that was set by DeepLabCut. Finally, this

test used the default dynamic learning rate set by DeepLabCut (see Table 4.1).

44

TABLE 4.1 Default dynamic learning rate

Learning

Rates

Training iterations range

0.005 0<iterations<10,000

0.02 10,001<iterations<430,000

0.002 430,001<iterations<730,000

0.001 730,001<iterations<1,030,000

TABLE 4.2 Performance at 100,000 training iterations

Network Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Resnet-50 0.0049 4.19 16.8 12.61

Resnet-101 0.0041 7.56 16.77 9.21

Mobilenet V2 0.0045 8.22 32.54 24.32

TABLE 4.3 Performance at 200,000 training iterations

Network Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Resnet-50 0.0038 3.70 11.77 8.07

Resnet-101 0.0029 3.22 11.62 8.40

Mobilenet V2 0.0032 5.10 26.44 21.34

TABLE 4.4 Performance at 300,000 training iterations

Network Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Resnet-50 0.0031 3.4 12.72 9.32

Resnet-101 0.0028 2.92 10.52 7.60

Mobilenet V2 0.0025 3.82 18.35 14.53

45

4.3 Testing Different Training and Test Dataset Split Ratio

The test in this section was done using the Resnet-101 (see Chapter 5.2 for the

reasoning behind this choice) network under the default dynamic learning rate (as in

Table 4.1) and the default network optimizer (SGD) set by DeepLabCut to find the

best train and testing dataset split ratio that can be used on the final recommended

Model, the number of frames used for each splitting ration is shown in Table 4.5. The

network was evaluated at three different training iterations to obtain a better

correlation between the pixel error and the dataset splitting ratio over the increasing

number of training iterations. Table 4.6-4.8 shows the results of this test.

TABLE 4.5 Frames used for each splitting ratio

Training:

Test

Training

frames

Test frames Total frames

95: 5 243 13 256

80: 20 205 51 256

70: 30 179 77 256

TABLE 4.6 Performance at 100,000 iterations

Training:

Test

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of

Test-Train pixel error

95: 5 0.0042 7.38 15.34 7.96

80: 20 0.0041 7.56 16.77 9.21

70: 30 0.0034 4.06 11.94 7.88

TABLE 4.7 Performance at 200,000 iterations

Training:

Test

Training loss Train pixel

error (pixels)

Test Pixel

error (pixels)

The discrepancy of

Test-Train pixel error

95: 5 0.0030 3.93 16.88 12.95

80: 20 0.0029 3.22 11.62 8.40

70: 30 0.0027 3.02 10.10 7.08

46

TABLE 4.8 Performance at 300,000 iterations

Training:

Test

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of

Test-Train pixel error

95:5 0.0025 3.57 14.82 11.25

80:20 0.0028 2.92 10.52 7.60

70:30 0.0023 2.31 10.05 7.74

4.4 Network Performance of Default and Custom Learning Rate

This test aims to find the best custom learning rate that is suitable for the labelled

chicken dataset that is used in this project and compare it with the default learning rate

set by DeepLabCut using the best network, and the best train and test splitting ratio

(70:30) obtained from the test 4.2 and 4.3 earlier. The default and custom learning

rates used in this test are presented in Table 4.9-10 respectively and the results are

presented in Table 4.11-13.

The custom learning rate that is used in this test is a slight modification of the default

learning rate. From Table 4.9, we could see that the training iteration range for the

default learning rate is larger as the range stopped at around one million iterations, and

to cater to the learning rates with the number of training iterations used in this project,

a modification of the default learning rate is done (as in Table 4.10). Due to the short

range of training iterations being used in this test, the final learning rate in the last row

of Table 4.10 was increased from 0.002, 0.001 (as in the last two rows of Table 4.9)

to 0.005.

The reason that this project is not testing up to a million training iterations (as

in the default learning rate in Table 4.9) is that to train a network for 300,000

iterations using DeepLabCut and Google Colab would take an average of 11 hours.

Hence, training a network until a million iterations for each test would not be practical

with the time constraints of this project and a million iterations is a relatively large

number of training iterations compared to the size of the dataset that this project has

(256 frames).

47

TABLE 4.9 Default dynamic learning rate

Learning

Rates

Training iterations range

0.005 0<iterations<10,000

0.02 10,001<iterations<430,000

0.002 430,001<iterations<730,000

0.001 730,001<iterations<1,030,000

TABLE 4.10 Custom dynamic learning rate

Learning

Rates

Training iterations range

0.005 0<iterations<10,000

0.02 10,001<iterations<214,400

0.005 214,401<iterations<300,000

TABLE 4.11 Performance at 100,000 iterations

Learning rate

type

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Default 0.0034 4.06 11.94 7.88

Custom 0.0037 3.00 9.38 6.38

TABLE 4.12 Performance at 200,000 iterations

Learning rate

type

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Default 0.0027 3.02 10.10 7.08

Custom 0.0025 2.92 9.02 6.1

TABLE 4.13 Performance at 300,000 iterations

Learning rate

type

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

Default 0.0023 2.31 10.05 7.74

Custom 0.0021 2.74 9.61 6.87

48

4.5 Custom Model Comparison

In this test, two custom models each using different custom hyperparameters were

tested. This test aims to find the best custom model that this study can produce. The

first custom model is the same custom model used in the previous test 4.4 and for this

test, it is called custom model 1 (CM1). The second custom model used here is called

custom model 2 (CM2) and it almost uses the same hyperparameters as CM1 with the

major difference is that CM2 is using Resnet-50 instead of Resnet-101. Table 4.14 is

summarising the differences in characteristics of CM1 and CM2. Both custom models

were evaluated at 200,000 and 300,000 iterations. The result of this test is presented in

Table 4.16-17.

TABLE 4.14 Charactertics of CM1 and CM2

Characteristics CM1 CM2

Network Resnet-101 Resnet-50

Learning rate Custom learning rate

(as in Table 4.15)

Custom learning rate

(as in Table 4.15)

Optimizer SGD (default) SGD (Default)

Final training iterations 300,000 300,000

Training: Test 70:30 80:20

TABLE 4.15 Custom dynamic learning rate

Learning

Rates

Training iterations range

0.005 0<iterations<10,000

0.02 10,001<iterations<214,400

0.005 214,401<iterations<300,000

49

TABLE 4.16 Performance at 200,000 iterations

Custom

model

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

CM1 0.0025 2.92 9.02 6.1

CM2 0.0037 3.18 7.83 4.65

TABLE 4.17 Performance at 300,000 iterations

Custom

model

Training loss Train pixel

error (pixels)

Test pixel

error (pixels)

The discrepancy of Test-

Train pixel error

CM1 0.0021 2.74 9.61 7.74

CM2 0.0023 2.77 7.69 4.92

50

CHAPTER 5

ANALYSIS AND DISCUSSION

5.1 Important Concept for Discussion

5.1.1 Overfitting

Overfitting is a concept in data science and overfitting occurs when the trained

network has a significantly better accuracy at predicting on the training dataset (the

dataset that is used to teach the network) and very low accuracy on the test dataset

(unseen data). Overfitting will cause the network to be bad at generalization on new

unseen data which is an important factor to consider if one were to deploy the network

for real-world environment use. Thus, overfitting in this discussion can also be said as

having very a high discrepancy between the test and train pixel error.

5.1.2 Pixel Error Categorization

Pixel error is the average distance between the hand-labelled (manual label) and the

label predicted by the trained network. Thus, a good and accurate keypoint prediction

network would have a low average distance between the human label and the

predicted label and can also be said as having low pixel error. As of the time that this

thesis is written, no formal documentation can be found on the range of pixel error that

can be considered as good or bad. However, from experience and observation of the

inferencing process (the video output with the predicted keypoints) using any of the

trained networks in this project and from reading online forums from GitHub and

Stack Overflow, the author would describe the characteristic of the network prediction

based on pixel error range in Table 5.1. The first network used the default learning

rate (refer Table

51

TABLE 5.1 Pixel error category

Pixel error

range

Categorization Description

Below 3.7 Good Would accurately detect all keypoints and

no noticeable jitter (repeatedly showing

and not showing the keypoint predictions)

Between 3.7

and 5.0

Mediocre Slightly less accurate prediction but with

noticeable jitter

Above 5.0 Bad Incorrect prediction or not showing any

prediction at all

5.2 Best Network Supported by DeepLabCut

From test 4.2 (see Table 4.2-4), we could see Resnet-101 has the lowest train and test

pixel error for all the training iterations that it was evaluated on (see Fig 5.1-2). This

would mean under the default hyperparameters presented in the second paragraph of

chapter 4.2, Resnet-101 has the best performance. Even though after 300,000

iterations, Resnet-101 managed to achieve 2.92 for test and 10.52 for train pixel error

which is the lowest pixel error out of the three networks that were tested, this does not

that the pixel error that Resnet-101 managed to obtain in this test is good.

FIGURE 5.1 Train pixel error across different network

4.19 3.7

3.4

7.56

3.22
2.92

8.22

5.1

3.82

0

2

4

6

8

10

100,000 200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Train pixel error Vs Training iterations

ResNet-50

Resnet-101

MobileNet-V2

52

FIGURE 5.2 Test pixel error across different network

FIGURE 5.3 Discrepancy test-train across different network

Using the pixel error categorization method shown in Table 5.1 earlier, we

could see that in test 4.2, Resnet-101 managed to achieve a train pixel error of 2.92

(see Fig. 5.1) after 300,000 training iterations which this value can be considered as a

good pixel error. However, for test pixel error Resnet-101 only managed to achieve a

pixel error of 10.52 (see Fig. 5.2) and based on the categorization method mentioned

earlier this is a bad pixel error. Since the train pixel error is significantly better than

the test pixel error, it can be deduced that under the default hyperparameters

mentioned in chapter 4.2, Resnet-101 overfits. However, the main reason Resnet-101

16.8

11.77 12.72
16.77

11.62
10.52

32.54

26.44

18.35

0

5

10

15

20

25

30

35

100,000 200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Train pixel error Vs Training iterations

ResNet-50

Resnet-101

MobileNet-V2

12.61

8.07
9.32

9.21
8.4 7.6

24.32
21.43

14.53

0

5

10

15

20

25

30

100,000 200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Discrepancy test-train pixel error Vs Training Iterations

ResNet-50

Resnet-101

MobileNet-V2

53

was chosen to be the best network out of Resnet-50 and Mobilenet V2 is that it

overfits less than all the other tested networks and this can be seen by Resnet-101

being able to achieve a 7.6 discrepancy between the test and train pixel error after

300,000 training iterations which are well below than the discrepancy achieved by the

other networks (see Fig. 5.3). Hence, the tests in chapters 4.3 and 4.4 is using Resnet-

101 to find the best hyperparameters based on the aim of each corresponding test.

5.3 Best Train and Test Splitting Ratio

FIGURE 5.4 Discrepancy test-train across the different splitting ratio

This section of the discussion will discuss the results presented in chapter 4.3. The test

in chapter 4.3 aimed to find the best training and test dataset splitting ratio based on

their corresponding performance using the hyperparameters presented in chapter 4.3.

Figure 5.4 is showing the discrepancy trend between the pixel error of the test and

train dataset. From Figure 5.4, when using the 95:5 splitting ratio, the discrepancy

value at 200,000 iterations almost doubled from 100,000 which is from 7.96 to 12.95.

This would suggest that using 95% of the dataset for training would result in much

faster overfitting and this implication is further justified by the discrepancy value that

the 95:5 ratio arrived at after 300,000 iterations (11.25) which is double the

discrepancy of other splitting ratios (also at 300,000 iterations) that was tested.

7.96

12.95

11.25

9.21
8.4

7.6
7.88

7.08

7.74

0

2

4

6

8

10

12

14

100,000 200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Discrepancy test-train pixel error Vs Training Iterations

95% train, 5% test

80% train,20% test

70% train, 30% test

54

 The network that used the 80:20 and 70:30 splitting ratio can be said as the

least overfitted network. However, when comparing the average discrepancy5 between

70:30 and 80:20, 70:30 has a much lower average discrepancy of 7.57 than the

average discrepancy of 80:20 which is 8.40. Thus, it could be said that the network

that used the 70:30 ratio has a lower average discrepancy which resulted in a

performance that overfits less than other networks that used the 80:20 and 95:5 ratio.

From this test also, it could be concluded that using a large network such as Resnet-

101 alongside a high amount of the dataset for training would make the network itself

overfits very early on in the training process. Since using the 70:30 split ratio managed

to get the best result, the next test presented in chapter 4.4 is using the 70:30 split ratio

to compare the performance of a network that used custom learning rate and the

network that used DeepLabCut default learning rate. From Table

5.4 Custom Learning Rate Performance

FIGURE 5.5 Discrepancy test-train across different learning rates

5Average discrepancy is total of the discrepancy (from each iteration) and divide by three.

 Average discrepancy (70:30) = (7.88+7.08+7.74)/3 = 7.57

Average discrepancy (80:20) = (9.21+8.40+7.60)/3 = 8.40

Average discrepancy (95:5) = (7.96+12.95+11.25)/3 = 10.72

7.88

7.08

7.74

6.38

6.1

6.87

0

2

4

6

8

10

100,000 200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Discrepancy test-train pixel error Vs Training Iterations

Default learning

rate

Custom learning

rate

Column1

55

This section of the discussion will discuss the result presented in chapter 4.4 which is

a test to compare and observe the effect of using custom and default learning rates on

the overfitting situation that occurs in the first two tests that were presented in chapter

4. In the test presented in chapter 4.4 two network/models were tested under the same

hyperparameters (presented in chapter 4.4) with the exemption of their learning rate.

The see the default and custom learning, refer to Table 4.9-10 within chapter 4.4.

From Figure 5.5, both networks had the smallest discrepancy between the pixel error

of the test and train dataset during the 200,000 iterations. Figure 5.5 also shows that

when both networks arrived at the 300,000-training iteration, the overfitting situation

for both networks is worsened, and this showed by a slight increase in the discrepancy.

 From Table 4.13, both networks managed achieved a train pixel error that can

be categorized as good (based on the categorization method in Table 5.1). However,

both networks perform poorly on the test dataset as both networks obtain a test pixel

error that is categorized as bad. This would suggest that while using the custom

learning rate as in Table 4.10, may improve on the overfitting problem, the test pixel

error is still large and cannot be considered as good. Based on test 4.4, it can be

concluded that the custom learning has resulted in better results than the default

learning rate for the kind of dataset that Resnet-101 is trained with. However, the peak

performance of both (where it overfits less) networks is when the training iterations is

less than 300,000.

5.5 Best Performing Custom Model

In the last test done in chapter 4.5, the network comparison was done between two

custom models. The first model named custom model 1 (CM1) uses the same model

that uses the custom learning rate in chapter test 4.4. The second custom model named

(CM2) has a slight difference in that it used Resnet-50 as the network, and it also used

80:20 training and test split ratio. The full characteristics of CM1 and CM2 alongside

the used hyperparameters are available in Table 4.14. From the first test (chapter 4.2)

and by observing the trend in Figure 5.1-3, Resnet-50 and Resnet-101 has an almost

56

similar performance in terms of their train and test pixel error and the test-train

discrepancy. However, during the first test Resnet-101 was deemed as the best

network due to the lowest value of test-train discrepancy which is an indicator that

Resnet-101 overfits less than Resnet-50.

TABLE 5.2 Architecture of different Resnet variants [44]

In the second and the third test, it has been shown that training Resnet-101

using a 70:30 dataset splitting ratio and using the custom learning rate (as in Table

4.10) has managed to lower the discrepancy between the test and train pixel error.

However, the main problem that persisted with Resnet-101 throughout all the tests is

that its test pixel error or the performance of Resnet-101 on new unseen data has been

bad with the lower test pixel error for a model that used Resnet-101 being 9.02.

Hence, in the last test Resnet-50 was chosen to be the comparison network to use

against Resnet-101 because Resnet-50 has an almost similar architecture but with a

much simpler architecture than Resnet-101. The complex network has a higher

capacity to process data and as claimed by Jason. B [45], a model can overfit because

the network has the capacity to do so. Table 5.2 is showing the difference in the

architecture of three variants of ResNet.

57

FIGURE 5.6 Train pixel error across different custom models

FIGURE 5.7 Test pixel error across different custom models

2.92

2.74

3.18

2.77

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Train pixel error Vs Training Iterations

CM1 (Resnet-101)

CM2 (Resnet-50)

9.02 9.61

7.83

7.69

0

2

4

6

8

10

12

200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Test pixel error Vs Training Iterations

CM1 (Resnet-101)

CM2 (Resnet-50)

58

FIGURE 5.8 Discrepancy test-train across different custom models

 Based on the results of the last test (see Fig. 5.6), all of the train pixel errors for

both CM1 and CM2 can be considered as good. For the test pixel error, both networks

obtained a pixel error that is categorized as bad however after 300,00 iterations CM2

managed to achieve the lowest test pixel error from all the test that was conducted (see

Fig. 5.7). Based on Figure 5.8, not only that CM2 manage to achieve the lowest test

pixel error in this project when moving from 200,000 to 300,000 training iterations

CM2’s already low discrepancy value of test-train pixel error only increased by 0.27.

On the other hand, CM1 already has a higher discrepancy value at 200,000 iterations,

and when assessed at 300,000 that value increased by 1.64.

This is confirming two claims, the first claim made in discussion chapter 5.4

which says that for the type of chicken keypoint dataset that is was trained on, the

peak performance of Resnet-101 in this project is around 200,000 and the second

claim that was presented earlier is that complex network (Resnet-101) is easier to

overfit because it has the capacity to do so. The second objective of this project is to

propose a model that can do poultry keypoint prediction on a video. Hence, the CM2

is proposed however the current performance of CM2 is not accurate on new data but

performs well on training data. Chapter 6 will talk about recommendations for any

future work of the methods that could be adopted tuned the CM2 model further.

6.1

7.74

4.65 4.92

0

5

10

200,000 300,000

T
ra

in
 p

ix
el

 e
rr

o
r

(P
ix

el
s)

Number of Training Iterations

Discrepancy test-train pixel error Vs Training Iterations

CM1 (Resnet-101)

CM2 (Resnet-50)

59

CHAPTER 6

CONCLUSIONS

To conclude, this thesis has gone through various methods that used different classes

of Artificial Intelligence to estimate the health state or posture estimation of a poultry

chicken. A method of pose estimation called DeepLabCut was adapted for this project

and the series of steps taken to train a keypoint prediction neural network were also

presented in detail. This project has managed to produce a poultry chicken dataset

(available online, see appendix B.1) that is annotated with the body keypoints, which

consist of around 29 videos of chicken and 256 labelled frames to fulfil the first

objective of this project. Moving on, to fulfil the second objective, this project has

managed to propose a deep learning model named CM2 (see chapter 5.5) that was

tuned through a series of trial-and-error tests using a deep convolutional network that

can detect poultry’s body keypoints on a video however as mentioned in the final part

of chapter 5 this model managed to get good accuracy on the training dataset but have

a poor performance on new unseen data. The series of tests presented in chapter 4 is

where the performance of the proposed model was compared to different networks

under various hyperparameters to fulfil the third and last objective of this project

which is to compare the accuracy of the proposed models to other models with

different hyperparameters and backbones.

Based on the experience of using DeepLabCut, a pose estimation toolbox,

there are a few limitations that the author experience, the first is the lack of

accessibility to modify the network layers, the ability to add a dropout layer to the

CM2 model network might increase its test accuracy and eliminate the overfitting

problem. The dropout layer is a method to prevent the model from overfitting which

will drop random neurons (randomly removing some of the learned weight and

biases). Lacking the ability to change the neural network layers may be a huge

60

drawback for an experienced deep learning engineer. The second limitations are that it

lacks available metrics that can be used to evaluate the model performance, the

metrics available while evaluating the network performance with DeepLabCut is the

pixel error and the training losses. Having an overall accuracy of the keypoint

prediction or a learning curve would be a great insight to have when tuning the

hyperparameters. Lastly, to finely tune the hyperparameters with DeepLabCut, one

must use either use a trial-and-error test or tune it based on intuition and experience

and this can be improved by others or developers of DeepLabCut who could work on

making DeepLabCut compatible with a hyperparameter optimization algorithm such

as Bayes search or Grid search rather than random search (trial and error) that was

adapted for this project. To close off this chapter, this poultry keypoint detection

project using a deep convolutional network is a basis of future work where others

could implement the keypoint detection model with another model that could

accurately predict the health of the poultry based on the estimated posture detected by

the keypoint detection model.

61

REFERENCES

[1] D. Berckmans, “General introduction to precision livestock farming,” pp. 6–11,

2017, doi: 10.2527/af.2017.0102.

[2] M. Henchion, M. Mccarthy, V. C. Resconi, and D. Troy, “Meat consumption :

Trends and quality matters,” MESC, vol. 98, no. 3, pp. 561–568, 2014, doi:

10.1016/j.meatsci.2014.06.007.

[3] S. Asia, OECD‑FAO Agricultural Outlook 2017‑2026. 2017.

[4] FAO, “Gateway to poultry production and products,” Food and Agriculture

Organizations of United States, 2018. http://www.fao.org/poultry-production-

products/products-processing/en/.

[5] I. D. A. Na, N. Duarte, R. F. Gonc, L. A. De Lima, H. Ungaro, and J. M. Abe,

“Lameness prediction in broiler chicken using a machine learning technique,”

no. xxxx, 2020, doi: 10.1016/j.inpa.2020.10.003.

[6] A. Aydin, “Development of an early detection system for lameness of broilers

using computer vision,” Comput. Electron. Agric., vol. 136, pp. 140–146, 2017,

doi: 10.1016/j.compag.2017.02.019.

[7] B. H. Thorp and S. R. Duff, “Effect of exercise on the vascular pattern in the

bone extremities of broiler fowl.,” Res. Vet. Sci., vol. 45, no. 1, pp. 72–77, Jul.

1988.

[8] M. S. Dawkins, C. A. Donnelly, and T. A. Jones, “Chicken welfare is

influenced more by housing conditions than by stocking density.,” Nature, vol.

427, no. 6972, pp. 342–344, Jan. 2004, doi: 10.1038/nature02226.

[9] M. S. Dawkins, “Behaviour as a tool in the assessment of animal welfare **,”

vol. 106, no. 2003, pp. 383–387, 2006.

[10] T. G. Knowles et al., “Leg Disorders in Broiler Chickens : Prevalence , Risk

Factors and Prevention,” no. 2, pp. 1–5, 2008, doi:

10.1371/journal.pone.0001545.

[11] D. Sergeant, R. Boyle, and M. Forbes, “Computer visual tracking of poultry,”

vol. 21, pp. 1–18, 1998.

[12] X. Zhuang and T. Zhang, “ScienceDirect Detection of sick broilers by digital

image processing and deep learning,” Biosyst. Eng., vol. 179, pp. 106–116,

2019, doi: 10.1016/j.biosystemseng.2019.01.003.

[13] C. Okinda et al., “ScienceDirect A machine vision system for early detection

and prediction of sick birds : A broiler chicken model,” Biosyst. Eng., vol. 188,

pp. 229–242, 2019, doi: 10.1016/j.biosystemseng.2019.09.015.

62

[14] “Recent Advances in Precision Livestock Farming,” vol. 1, no. 2.

[15] P. Sayak, “Keypoint Detection with Transfer Learning,” Keras, May 02, 2021.

https://keras.io/examples/vision/keypoint_detection/ (accessed Dec. 22, 2021).

[16] C. Melissa, “Medical Definition of Posture,” MedicineNet, Mar. 29, 2021.

https://www.medicinenet.com/posture/definition.htm (accessed Dec. 22, 2021).

[17] G. Damerow, The Chicken Health Handbook: A Complete Guide to Maximizing

Flock Health and Dealing with Disease, 2nd editio. Storey Publisher, 2015.

[18] M. Manav, “CNN for Deep Learning | Convolutional Neural Networks,”

Analytics Vidhya, May 01, 2021.

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-

cnn/ (accessed Jan. 12, 2022).

[19] S. Bartosz, “How Convolutional Neural Network works | by Bartosz

Szabłowski | Towards Data Science,” Towards Data Science, Nov. 16, 2020.

https://towardsdatascience.com/how-convolutional-neural-network-works-

cdb58d992363 (accessed Jan. 12, 2022).

[20] S. Sumit, “A Comprehensive Guide to Convolutional Neural Networks — the

ELI5 way | by Sumit Saha | Towards Data Science,” Towards Data Science,

Dec. 16, 2018. https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed Jan. 12,

2022).

[21] G. Carneiro, J. Nascimento, and A. P. Bradley, “Deep Learning Models for

Classifying Mammogram Exams Containing Unregistered Multi-View Images

and Segmentation Maps of Lesions,” Deep Learn. Med. Image Anal., pp. 321–

339, Jan. 2017, doi: 10.1016/B978-0-12-810408-8.00019-5.

[22] C. A. Weeks, “lameness in broiler chickens,” no. June 2014, 2002, doi:

10.1136/vr.151.25.762.

[23] O. H. Maghsoudi and A. Spence, “Superpixels Based Marker Tracking Vs .

Hue Thresholding In Rodent Biomechanics Application,” pp. 209–213, 2017.

[24] S. A. Mehdizadeh, D. P. Neves, M. Tscharke, I. A. Nääs, and T. M. Banhazi,

“Image analysis method to evaluate beak and head motion of broiler chickens

during feeding,” Comput. Electron. Agric., vol. 114, pp. 88–95, 2015, doi:

10.1016/j.compag.2015.03.017.

[25] X. Zhuang, M. Bi, J. Guo, S. Wu, and T. Zhang, “Development of an early

warning algorithm to detect sick broilers,” Comput. Electron. Agric., vol. 144,

no. November 2017, pp. 102–113, 2018, doi: 10.1016/j.compag.2017.11.032.

[26] C. Okinda et al., “Arti fi cial Intelligence in Agriculture A review on computer

vision systems in monitoring of poultry : A welfare perspective,” Artif. Intell.

Agric., vol. 4, pp. 184–208, 2020, doi: 10.1016/j.aiia.2020.09.002.

[27] C. Fang, J. Huang, K. Cuan, and X. Zhuang, “ScienceDirect Comparative study

on poultry target tracking algorithms based on a deep regression network

63

Region of Interest,” Biosyst. Eng., vol. 190, no. 2016, pp. 176–183, 2020, doi:

10.1016/j.biosystemseng.2019.12.002.

[28] C. Google, “Xception : Deep Learning with Depthwise Separable

Convolutions,” pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.

[29] J. Hui, “SSD object detection: Single Shot MultiBox Detector for real-time

processing,” Jonathan Hui Medium, 2018. https://jonathan-

hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-

time-processing-9bd8deac0e06#:~:text=SSD is designed for object,what real-

time processing needs. (accessed Feb. 25, 2021).

[30] M. Everingham, L. Van Gool, C. K. I. Williams, and J. Winn, “The P ASCAL

Visual Object Classes (VOC) Challenge,” pp. 303–338, 2010, doi:

10.1007/s11263-009-0275-4.

[31] C. Fang, T. Zhang, H. Zheng, J. Huang, and K. Cuan, “Pose estimation and

behavior classification of broiler chickens based on deep neural networks,”

Comput. Electron. Agric., vol. 180, no. October 2020, p. 105863, 2021, doi:

10.1016/j.compag.2020.105863.

[32] Y. Ed, “DeepLabCut: A Game-Changing Tool for Tracking Animal

Movements - The Atlantic,” The Atlantic, Jul. 28, 2018.

https://www.theatlantic.com/science/archive/2018/07/deeplabcut-tracking-

animal-movements/564338/ (accessed Dec. 30, 2021).

[33] G. Yufeng, “Which Python package manager should you use? | by Yufeng G |

Towards Data Science,” towards data science, Oct. 17, 2017.

https://towardsdatascience.com/which-python-package-manager-should-you-

use-d0fd0789a250 (accessed Dec. 30, 2021).

[34] W. Jeon, G. Ko, J. Lee, H. Lee, D. Ha, and W. W. Ro, “Chapter Six - Deep

learning with GPUs,” in Hardware Accelerator Systems for Artificial

Intelligence and Machine Learning, vol. 122, S. Kim and G. C. Deka, Eds.

Elsevier, 2021, pp. 167–215.

[35] Z. Sui, D. Raubenheimer, and A. Rangan, “Consumption patterns of meat,

poultry, and fish after disaggregation of mixed dishes: Secondary analysis of

the Australian National Nutrition and Physical Activity Survey 2011-12,” BMC

Nutr., vol. 3, no. 1, pp. 1–12, Dec. 2017, doi: 10.1186/S40795-017-0171-

1/TABLES/5.

[36] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation

for Deep Learning,” J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi:

10.1186/S40537-019-0197-0/FIGURES/33.

[37] T. Aysegul, “Top 13 Data Augmentation Techniques: Comprehensive Guide,”

AI Multiple, Nov. 29, 2021. https://research.aimultiple.com/data-augmentation-

techniques/ (accessed Dec. 23, 2021).

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features

64

in deep neural networks?,” Adv. Neural Inf. Process. Syst., vol. 4, no. January,

pp. 3320–3328, Nov. 2014, Accessed: Jan. 04, 2022. [Online]. Available:

https://arxiv.org/abs/1411.1792v1.

[39] A. Mathis et al., “Pretraining boosts out-of-domain robustness for pose

estimation,” Proc. - 2021 IEEE Winter Conf. Appl. Comput. Vision, WACV

2021, pp. 1858–1867, 2021, doi: 10.1109/WACV48630.2021.00190.

[40] B. Jason, “Understand the Impact of Learning Rate on Neural Network

Performance,” Machine Learning Mastery, Jan. 25, 2019.

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-

on-deep-learning-neural-networks/ (accessed Jan. 06, 2022).

[41] L. Fei-Fei, K. Ranjay, and X. Danfei, “CS231n Convolutional Neural Networks

for Visual Recognition,” Stanford CS231n Course Notes.

https://cs231n.github.io/neural-networks-3/#add (accessed Jan. 08, 2022).

[42] T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge, and M. W. Mathis,

“Using DeepLabCut for 3D markerless pose estimation across species and

behaviors,” Nat. Protoc., vol. 14, no. 7, pp. 2152–2176, 2019, doi:

10.1038/s41596-019-0176-0.

[43] K. Konstantin and L. Molly, “A survey of Deep CNNs for Mouse Paw

Location,” Stanford.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 2016-Decem, pp. 770–778, Dec. 2016, doi: 10.1109/CVPR.2016.90.

[45] B. Jason, “How to Avoid Overfitting in Deep Learning Neural Networks,”

Machine Learning Mastery, Dec. 17, 2018.

https://machinelearningmastery.com/introduction-to-regularization-to-reduce-

overfitting-and-improve-generalization-error/ (accessed Jan. 13, 2022).

65

APPENDICES

APPENDIX A

List of DeepLabCut Commands, File Parameters [42]

A.1 Summary of DeepLabCut Commands

66

A.2 Summary of Config.yaml Parameters

67

A.3 Summary pose_cfg.yaml Parameters

68

APPENDIX B

B.1 Collected videos, output videos (predicted by CM2), and labelled dataset link:

https://unitenedumy-

my.sharepoint.com/:f:/g/personal/ee0102953_student_uniten_edu_my/ErQn9OZZyuF

EuQ4XCLW4N4QBGJ6bKzLdwJhIsie7LEu8Fg?e=sx2HYC

B.2 Links to this project GitHub repository which contains the installation codes, link

to the dataset, and codes to the series of tests (please do refer to the file that contains

the codes as well that is submitted through teams)

https://github.com/amrhkm/POULTRY-POSE-DEEPLABCUTV2

