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ABSTRACT 

Nowadays, there is an increasing awareness of acceptable farm animal welfare 

conditions, farm animal health, efficiency, and sustainable farm environments. Animal 

behavioural analysis can provide an insight into the health of these farm animals. 

Poultry chicken is a white meat source that has one of the highest worldwide demands. 

The conventional method to diagnose disease in poultry flock is through observation 

by a veterinarian and what the veterinarian determines, and this method is no longer 

viable because, in large-scale production, it requires many veterinarians to perform 

regular inspections, which is both time-consuming and labour-intensive and this will 

make it harder to detect sick poultry at an early stage. Hence, behavioural analysis 

which is a process that could be used to recognize sickness in poultry would greatly 

benefit not only the poultry farming industry but also the consumer. Diagnosing 

poultry diseases can be done through any indication shown by poultry’s behaviour. 

One of the bases of behavioural analysis is accurate pose estimation. An accurate 

poultry pose estimation would be able to identify when the posture of the poultry is 

abnormal, with such data the farmers could find a way to cure or isolate the sick 

poultry. Hence, this paper is studying how a class of Artificial Intelligence (Deep 

Convolutional Network) can be utilized to accurately detect the poultry’s body 

keypoints in a video. Poultry keypoint detection involves predicting the location of the 

specific body keypoints of the poultry like the centre of the body, head, tailbase, left 

and right leg. Accurate poultry’s body keypoint detection using Artificial Intelligence 

is the basis to develop an accurate automated poultry health classifier. This paper will 

go into detail about the method used to gather the needed data to train the Deep 

Convolutional Network, methods to and tuned train the network to accurately predict 

and detect poultry’s body keypoints on a video. This paper would also compare and 

find the best available Deep Convolutional Network that would be deemed suitable for 

keypoint detection on poultry using a state-of-the-art method called DeepLabCut 

which is a pose estimation toolbox. 
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CHAPTER 1  

INTRODUCTION 

1.1 General Background 

The future global meat consumption is predicted to increase by 70% by 2050 [1] 

followed by a projection of over 9.96 billion people of the world population by the 

year 2050. Hence, there is an increase in food security concerns which causes an 

increase in agricultural production. Henchion et al. [2] reported that there is an 

indication of increased consumption of poultry meat and poultry meat products, with a 

projected increase within the next decade due to preferences for white meat [3]. The 

growing demand has mostly been driven by urbanization and rising incomes in 

developing countries[4]. Acceptable animal welfare conditions, animal health, 

efficiency, and sustainable environmental condition have become more challenging to 

fulfil due to the increasing amount of chicken production [1].  Poultry flock welfare is 

usually assessed through mortality physiology, behaviour, and walking ability [5].  

Walking ability or lameness is one of the common traits that can be used to 

determine the welfare of poultry [6]. Lameness is a word used to describe a range of 

injuries with infective and non-infective sources experienced by the poultry [7]. 

However, Aydin [6] stated that lameness can also be said as poultry’s ability to run. 

Lameness in poultry is usually ranked by trained farmers and veterinarians using a gait 

score system. Gait score zero (GS0) would mean that there is no detectable 

abnormality, fluid locomotion, and furled foot when raised shown from the poultry 

and gait score five (GS5) would mean that the poultry is in complete lameness, either 

cannot walk or cannot support its weight on its leg. According to paper [8] and [9], 

this procedure gives a basis for future management in welfare decisions. However, 

using this technique visually on a large flock might lead to biased results since the 

evaluation might vary between different individuals [10] 
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1.2 Problem Statement 

In recent years, poultry disease outbreaks have occurred frequently, and this is leaving 

a bad impact on the poultry industry. Currently, the conventional method for 

monitoring poultry disease is mainly carried out by manual observation of poultry 

posture, feathers, cockscombs, faeces, and sounds [11]. The problem with manual 

observation is, in large-scale production, it requires many people to perform regular 

inspections, which is both time-consuming and labour-intensive and this will make it 

harder to detect sick poultry at an early stage [12]. Hence, human surveillance has 

ceased to be a viable solution in livestock farming [13]. Precision Livestock Farming 

(PLF) has been used to solve these challenges by using efficient automated systems 

while at the same time maintaining animal welfare [14].   

1.3 Proposed Solution 

With the advancement of artificial intelligence and specifically in the branch of the 

deep convolutional network, this paper proposed an automated system that could 

detect the poultry’s body keypoints using a deep convolutional network. Obtaining the 

body keypoints of poultry is a crucial step in developing an automated system that 

could detect the poultry's mobility or posture. However, this paper is focusing on 

posture estimation rather than mobility due to the type of data that could be gathered 

(will be further discussed in Chapter 3). 

1.4 Objectives of the Research 

Below is the list of objectives for this paper.  

i. To produce a poultry dataset that is annotated with the body keypoints. 

ii. To propose a deep learning model that can detect the keypoints of a poultry 

on a video. 

iii. To compare the accuracy of the proposed models to other models with 

different hyperparameters and backbones. 
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1.5 Scope of Thesis 

 

This part will explain the flow of this thesis which consists of six chapters that begin 

with an introduction, literature review, methodology, observation & results, analysis 

of result and general discussion, and conclusion & recommendation.  

The first chapter serves as an introduction to the overall paper. This chapter 

addresses the research's context, identifies the problem statement, defines the project 

objective, and briefly explains the scope of work. This chapter aims to make it clear 

about the significance of the problem and the research work outline. 

The second chapter contains the summary of the literature review and the most 

advanced methods used by other researchers that is related to this project. This part 

will also discuss the Deep Convolutional Network alongside keypoint and posture 

detection for both human and poultry applications, based on which the subsequent 

work was done and the decisions that are made. 

Chapter three review the methodology which will go through the type of 

software used and how it was used followed by the data preparation, the Deep 

Convolutional Network training process, the evaluation metrics of the trained network, 

and finally, the flowchart of this entire project. This chapter aims to provide a detailed 

guide that other researchers could use to replicate it. Lastly, this part will also talk 

about the advantages and the limitations of the methods used. 

Chapter four contains the details regarding the observation and results. In this 

chapter the results presented are from a series of test that was done to find the best 

hyperparameters that should be used to train the best deep convolutional network 

model. 

The purpose of chapter five is to evaluate and interpret the test results that are 

presented in chapter four. Here is where the choices made for the final tuned 

hyperparameters are further justified using the obtained results and the theory behind 
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the hyperparameters. This chapter also aims to discuss whether the final recommended 

model of the tuned network has any significant improvement than the untuned 

network.  

Chapter six is the final chapter where the outcomes of this project are 

summarized. This part will also present whether the findings and results obtained have 

met the expectations and the project objectives. Finally, this chapter will also mention 

the limitations of the study and ways that it can be further improved alongside the 

possibilities and suggestions on future work that can be done by using the findings in 

this study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Introduction 

This chapter will highlight the importance and the role that keypoint detection had in 

the human application and followed by relating it to the reason why keypoint detection 

is a crucial part of poultry pose estimation with a further argument on the significance 

of poultry pose estimation. This chapter will also briefly focus on deep Convolutional 

neural networks (DCNN) and compare them to a normal Convolutional Neural 

Network (CNN). Finally, this chapter will review a few related works that use 

different artificial intelligence (AI) based methods to solve the problem statement 

presented in chapter 1. 

2.2 Keypoint Detection 

2.2.1 Definition and human application 

Keypoint detection in humans involves locating parts of human limbs, or facial 

features. These parts help to represent the underlying object in a feature-rich manner 

[15]. The common application of keypoint detection is pose estimation and facial 

expression estimation. For any automated system that could do pose estimation on a 

human would also mean that the system can do posture detection. In medical terms, 

posture is the carriage of the body as a whole, the attitude of the body or the placement 

of the limbs (the arms and legs) are all aspects of posture [16]. Human posture 

detection enables the acquisition of the human body's kinematic properties, which is 

useful in a variety of applications such as assisted living, healthcare, physical exercise, 

and rehabilitation. Recent advances in deep learning and computer vision can 

substantially aid this effort. 
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2.2.2 Significance of Poultry Pose Estimation 

Based on the research process and the literature review of other common work (will be 

discussed in section 2.3), there are two traits of all poultry that can be utilized to 

develop an automated system that can determine the poultry health state, the first is 

the poultry mobility or lameness which is usually judged by the ability of poultry to 

walk, and the second trait is the posture that the poultry is displaying. This paper is 

focusing on detecting the posture of a poultry chicken. 

The process of determining the health of poultry by using its posture can be 

simplified into three main processes. The first process is to detect the important 

keypoints on the poultry’s body which then can be used in the second process where 

the detected key points on the bird’s body is used to estimate the bird’s pose (standing, 

preening, running, or sitting) and finally, this pose estimation can be used to predict 

the bird’s health. The posture of poultry could describe the health of a poultry, most 

used type of poultry in this paper is chicken, and sick chicken is often reluctant to 

walk for very long and will isolate itself and displays a depressed bird look/posture 

[17] and Figure 2.1 is showing a comparison image of the posture of a sick chicken (a) 

and a healthy chicken (b). 

 
                (a) Sick chicken posture             (b) Healthy chicken posture 

FIGURE 2.1 Posture comparison of sick and healthy chicken 
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2.3 Deep Learning 

2.3.1 Convolutional Neural Network 

Convolutional Neural Network (CNN/ConvNet) is a class of Deep Learning 

algorithms used to evaluate visual imagery by assigning relevance (parameters: 

learnable weights and biases) to various aspects/objects in the image and using those 

parameters to distinguish between the different classes of object. One of the 

differentiating factors between CNN and other Deep Learning algorithms is that CNN 

makes use of a technique called Convolution. Convolution is a mathematical operation 

on two functions that yields a third function that explains how the shape of one is 

changed by the other [18].  Figure 2.2 is a typical architecture of a CNN. 

 

FIGURE 2.2 Typical architecture of CNN [19] 

The architecture of a CNN is inspired by the structure of the Visual Cortex and 

is akin to the connectivity pattern of Neurons in the Human Brain. Individual neurons 

can only respond to stimuli in a small area of the visual field called the Receptive 

Field [20]. Several similar fields can be stacked on top of each other to span the full 

visual field. A CNN network starts with an image as input then it passed sequentially 

into convolutional, pooling, and fully connected (FC) layers. The convolutional layer 

contains a set of filters (or kernels) and the learned parameters during the training 

process. When the images convolve with each filter, it creates an activation map [21]. 

The pooling layer has a function that plays a role in reducing the spatial size of the 
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convolved features and this is to reduce the amount of computing power needed to 

process such data. The fully connected layers are the last few layers of the network, 

this layer performs classification tasks using the features collected by the previous 

layers. 

2.3.2 CNN in Keypoint Prediction 

CNN architecture for object classification is slightly different than the CNN 

architecture used for a keypoint prediction task. As an example, in DeepLabCut (a 

method used in this project, which will be further discussed in chapter 3) uses a 

combination of normal object classification CNN and a deconvolutional layer. Unlike 

normal object classification CNN that have a classification layer (such as the Fully 

Connected layers in Fig. 2.2) at its output, it was replaced with deconvolutional layers 

(opposite of convolutional layers) that are used to generate spatial probability 

densities, which represent the probability of the body being in a particular position. 

Figure 2.2 is showing the architecture of Resnet-50 (a variant of a CNN) with a 

deconvolutional layer at its output. 

 

FIGURE 2.3 Deconvolutional layer and CNN 
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2.4 Related Work 

A few theories and methods were mentioned in this section to have a better 

understanding of how deep learning or machine learning can help in determining the 

health status of poultry chickens. This section presents a posture and mobility 

evaluation to provide a technique for distinguishing healthy and sick birds. To monitor 

poultry welfare, posture, and mobility analysis is the common method as this will 

determine the poultry lameness and then enable us to determine their health. In some 

chicken farms, it has been detected that around 27% of the chicken showed poor 

movement and 3% of chickens were unable to move [10]. When a chicken is having 

locomotion problems, the bird will have low mobility and this will increase the 

chances of that bird having other problems such as chest soiling [22]. 

2.4.1 The Problem with Detecting Poultry 

The advancement of computer vision and deep learning in the past decades has 

resulted in deep learning being applied more and more in animal analysis research. In 

some animal posture studies, some additional markers are usually placed on the 

animal to enhance the recognition precision [23]. However, with the precision that 

these markers provide, this type of system is expensive and distracts animals because 

they are invasive. Cameras are the common tool researchers used for monitoring the 

diet status, behavioural habits, and physiological changes of poultry in real-time [24]. 

Cameras have the advantage of not being invasive which reduces their impact on the 

animal’s life. 

The difficulty of poultry monitoring is in the foreground detection which 

causes by the complex background, variations in illuminations and, occlusion 

problems in a real poultry farm environment. When the colours and the texture of the 

foreground and background are similar, it is hard to segment the chicken from the 

background. Zhuang et al. [25] stated that early warning of changes in the health status 

of the chicken has always been a difficult challenge for research. Due to the nature of 
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the chicken that tends to stay densely stocked and like to gather very closely to each 

other, it is very difficult to accurately detect each chicken. Hence, it is hard to judge 

their health status if detecting them is a problem. 

2.4.2 Deep Learning Technique to Detect Poultry Chicken 

Convolutional Neural Network (CNN) is one of the most used deep learning 

architectures in digital image processing. It is commonly used in object detection and 

classification task in computer vision. CNN is a multi-layered network that can learn 

features of a target to perform an autonomous detection. It comprises several neural 

layers: convolutional, non-linear activation layer, pooling, and fully connected layers. 

Thus, resulting in the mapping of an input to a 1D feature vector. Figure 2.4 presents 

the general structure of CNN architecture [26]. 

 

FIGURE 2.4 Convolutional neural network architecture [26] 
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Sergeant et al. [11] proposed a poultry tracking system based on pixel 

information by segmenting the outline of the broiler chicken and using the centroid 

segmentation algorithm. However, such a method may be hard in a dense environment 

where the broiler gathers very close with each other. Fang et al. [27] use the Tbroiler 

tracking algorithm to track a single chicken in a flock and analysed the related 

indexes, such as the overlap rate (OR) and the pixel error (PE). Various classical 

CNNs can be used in classification, such as VGGNet, Google Inception Net, 

NASNetMobile, ResNet, and Xception [28]. These methods provide the scope for 

deep learning solutions to judge the health status of broilers [12]. 

Single Shot MultiBox Detector (SSD) is designed for object detection in real-

time. Faster Recurrent Convolutional Neural Network (Faster-RCNN) uses a region 

proposal network to create boundary boxes and utilizes those boxes to classify objects 

and it is considered excellent in terms of accuracy. However, it runs at 7 frames per 

second which is far below what real-time processing needs [29]. SSD speeds up the 

process by eliminating the need for a region proposal network. Each bounding box can 

be identified as to whether it is a target or not, and regression can be used to find the 

exact location [12]. Using multi-scale features SSD has the advantage of being able to 

detect, identify targets in real-time and performs very well with overlapping targets, 

but the detection of small targets such as broiler chicken is not ideal. 

Zhuang and Zhang [12] introduced a target detection algorithm called 

Improved Feature Fusion Single Shot MultiBox (IFSSD) to classify healthy and 

suspected sick chickens. IFFSD uses FSSD, where FSSD concatenates the features at 

each level and generates the feature pyramid network (FPN) while SSD only predicts 

the features directly at various levels and there is no connection between each level. 

One of the ways Zhuang and Zhang improved the FSSD is by adding the PASCAL 

VOC2021 dataset [30] containing 17,125 images as background images for training 

and to reduce the false recognition rate and improved the robustness of recognition. 

The detector could detect broilers and their health simultaneously at mean average 

precision (MAP) of 99.78%. 
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2.4.3 Methods of Detecting Sick Poultry 

2.4.3.1 Machine learning method 

The study on poultry mobility done by Nääs et al. [5] uses a machine learning 

approach to judge the health status of the poultry chickens based on their mobility. In 

the author’s research, the birds were separated by their Gait Score (GS) to represent 

the ranges of scores, and a video recording was made. The pre-defined scores aim to 

be able to study the various ranges of chicken mobility. The birds were stimulated to 

walk on the specially built platform and the background of the recording video was a 

blue wall to provide a contrasting background from the birds. The video signals were 

then converted to an image and the centroid of the chicken body was determined. The 

distance moved by the broiler’s centroid between a pair of consecutive frames was 

used to calculate the broiler speed, velocity, and acceleration. The analysed videos 

formed a matrix database that is used in data mining analysis. 

2.4.3.2 Deep learning method 

For a deep learning approach, Fang et al. [31] used deep neural networks to estimate 

the pose of the chicken to determine its behaviour classification. Accurate pose 

estimation is important for poultry behavioural analysis, and it is also able to provide 

an early warning method to poultry disease. First, the researchers created a map of a 

broiler chicken pose skeleton. As seen from Figure 2.5, there are ten custom feature 

points in this pose skeleton. Point 1 is the centre point of the broiler chicken [25]. 

Point 2 is the tail point, point 7 and 8 is the left and right eye, point 9 is the highest 

points of the comb, and point 10 is the tip of the beak. Points 3 and 4 represent the 

knee point and it is also the dividing points of colour between the legs and the 

feathers. Points 5 and 6 are heel points which are the joints of the phalanges. 
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FIGURE 2.5 Feature points of a chicken [27] 

The experiment was done with four K90 broilers (between 40 and 50 weeks 

old) in an area of 4 m × 3 m to ensure that the broiler chickens have enough space for 

free movement while the videos were taken. A broiler chicken is feeding through and 

a set of water tanks within that area. The system consists of a high-definition video 

camera and a computer. Captured images were transmitted to a computer via a serial 

bus (USB) port for pose estimation and behaviour classification. 

The process of chicken-pose estimation introduced by Fang et al. [31] is shown 

in Figure 2.6. In (a) the region of interest (ROI) in the training images were extracted 

including the posture of the broiler chicken. (b) showed that the feature points of the 

chicken body parts were marked as ROI and these features are as discussed and 

mentioned in the first paragraph of this section and the features points are as shown in 

Figure 2.5. The image and the coordinate of the marked points were then sent to the 

network to train the algorithm. Part (c) showed that, to the prediction of the position of 
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the chicken body part, the pre-trained ResNet-50 is used. ResNet-50 is a 50-layer 

residual network, and its parameter is obtained by pretraining on ImageNet. In (d), the 

spatial probability density is obtained by sampling the chicken image information 

using a deconvolutional layer (DL). The result is a trained network that can extract the 

locations of the different feature points from the test video. 

 

FIGURE 2.6 Chicken-pose estimation process [31] 

2.3.4 Related Work Conclusion 

The deep learning technique to detect poultry mentioned in section 2.4.2 is to address 

the problem that is presented in section 2.4.1 related to how the poultry chicken is 

usually gathering closely to each other in a real farm environment. In my opinion, the 

machine learning method proposed by Nääs et al. [5] in section 2.4.3.1 is suitable to 

detect the mobility of the chicken and classify their health in a controlled environment. 

However, in a real farm environment, the machine learning method mentioned is 

unsuitable because there is no confirmation that the poultry will walk through the 

specially built platform as in the method in section 2.4.3.1. Therefore, for a real farm 

environment, the deep learning method as in section 2.4.3.2 as proposed by Fang et al. 
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[31] is much more suitable. This is because the deep learning method can estimate the 

pose of the chicken and its behaviour classification rather than having to analyse the 

movement of the bird which will require a clear movement of chicken recorded on the 

camera to calculate its speed, acceleration, and velocity like the method mentioned in 

2.4.3.1 rather than just having a video of a chicken doing a certain pose. Hence, this 

paper is focusing on a deep learning technique called deep convolution network to 

estimate the pose of poultry chicken by the means of keypoint detection. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction 

This chapter reviews the methods in detail which will start with the software that was 

used, how such software was installed or accessed, and how the software is relevant 

for this study. This chapter will also specify how the data was gathered, what 

manipulation was done to the data, and how the data is used. This followed by an 

explanation of how the artificial intelligence part of this project which is the Deep 

Convolutional Network (DCN) was trained and what parameters were changed to 

fine-tune it based on the type of dataset that was gathered. Lastly, this chapter will 

present the available methods that are used to evaluate the performance of the trained 

network and followed by the method used for inferencing using the trained network. 

3.2 Software Used 

3.2.1 DeepLabCut 

DeepLabCut (DLC) is an open-source toolbox for a robust approach of 2D or 3D 

markerless pose estimation of animals performing a variety number of tasks by 

utilizing deep neural networks with transfer learning. DeepLabCut, developed in the 

year 2018 by Mackenzie and Alexander Mathis, a married couple of neuroscientists. 

DeepLabCut is essentially a tweaked version of DeeperCut, a neural network 

algorithm developed by other researchers to detect and label human poses in videos 

[32]. DeeperCut is good at detecting human poses as it was trained on thousands of 

hand-labelled frames.  

However, to predict the label on a different species, the training state must be done 

from the start again. Hence, what the Mathises has done is to tweak the DeeperCut and 

pretrained it on ImageNet, which is a huge image database for image classification. 
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Now the DeeperCut algorithm is given a basic visual system that can tell apart 

between different images such as a chicken and car. Now that it can tell apart from 

different species of animal, the network is ready to recognize more specific body parts 

of the animals and predicts its keypoints.  

In this project, the DeepLabCut toolbox was used in two different methods to 

achieve different goals. The first methods are by using the DeepLabCut graphical user 

interface (GUI) to label the extracted frames from the collected video dataset which is 

also the first objective of this project. The second way DeepLabCut was utilized is by 

using its Python command to train and evaluate the deep convolutional network and 

this is where the second and third objectives of this project are attempted to be met.  

The reason for choosing DeepLabCut instead of training a deep neural network 

from scratch is because DeepLabCut is beginner friendly as it provides a clear and 

comprehensive pathway on how to tune the deep neural network that is supported by 

DeepLabCut and how to adapt it to the type of dataset that is relevant to this project. 

Even so, that does not mean DeepLabCut is the perfect tool and without its limitation. 

The main trade-offs are that because of the tight integration between each step of 

training the deep neural network, only a limited number of the deep neural network is 

supported, and it is also lacking in the ability to modify the layers of the deep neural 

network itself which could be a huge drawback for seasoned deep learning engineer. 

3.2.1.1 GUI installation with Anaconda environments  

To install the DeepLabCut graphical user interface (GUI), the installation was done 

through Anaconda virtual Environment as recommended by the developer of 

DeepLabCut itself. Anaconda is a Python package built by Continuum Analytics that 

comes preloaded with several major Python libraries that is related to data science 

task. The main benefit of installing DeepLabCut GUI through Anaconda is because 

Anaconda enables the creation of an environment that is isolated and not affected by 

the operating system or the administrative libraries of the local hardware which could 
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cost compatibility problems between the different Python libraries [33]. The 

Anaconda environment can be downloaded directly from any browser. 

 The compatibility problem mentioned did happen initially when installing 

DeepLabCut directly from the command prompt of the local personal computer. 

However, by using Anaconda environments, such a problem was overcome. The 

DeepLabCut GUI is only used in this project for frame extraction and keypoint 

labelling purposes. The training and evaluation process can be done using the GUI 

itself but with limited features lacking such as the hyperparameters manipulation.  

The version of DeepLabCut GUI installed on the Windows 10 personal 

computer is the central processing unit (CPU) version as the personal computer used 

for this project is not equipped with any supported graphic processing unit (GPU). The 

commands shown in Figure 3.1 are run on the anaconda prompt (already pre-installed 

with Anaconda) is to install the DeepLabCut GUI. Figure 3.2 is the set of commands 

used to get into the DeepLabCut environment and launch the GUI from the Anaconda 

Prompt. From Figure 3.2, we could see that before entering the DeepLabCut 

environment, on the topmost left side of the terminal, within the bracket is showing 

the word base, which would mean that the system is not yet entering the DeepLabCut 

environment. Based on Figure 3.2, after activating the DeepLabCut environment the 

word base will change into DeepLabCut to indicate that the system has entered the 

DeepLabCut environment, and only after entering this environment the DeepLabCut 

GUI can be launched. 

C:\Users\hamir>cd desktop 

C:\Users\hamir\Desktop>cd dlc 

C:\Users\hamir\Desktop\dlc>git clone https://github.com/DeepLabCut/DeepLabCut.git 

C:\Users\hamir\Desktop\dlc>cd DeepLabCut/conda-environments 

C:\Users\hamir\Desktop\dlc\conda-environments> conda env create -f DEEPLABCUT.yaml 

FIGURE 3.1 Command of installing DLC-GUI 
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FIGURE 3.2 Commands to launch the DLC-GUI 

3.2.2 Google Colab Pro and Google Drive 

Google Colaboratory or also known as Google Colab is a product of Google’s 

research with Jupyter notebook. Google Colab is a cloud computing service that is 

allowing developers, students, or researchers to build and run Python programmes 

directly from their browser. The first reason that Google Colab is an excellent 

platform to code from is that many widely used machine learning libraries are 

supported or pre-installed by Colab and can be easily loaded into the notebook and 

most importantly Google Colab will also support the DeepLabCut library. The second 

advantage of using Google Colab, for a deep learning project that works with a large 

amount of data such as this project, Google Colab can work with all the saved files in 

Google Drive, and because of this feature both codes and the data is safe and easy to 

backup and restore in the case of saving error. Finally, the biggest advantage of using 

Google Colab is having the ability to utilize Google graphic processor unit (GPU) for 

training the model which is also the recommended way to train the network by the 

developer of DeepLabCut. 

The reason that GPU is better at training a deep learning network than the CPU 

is that the GPU is better at parallel computing when compared to the CPU [34]. 

Parallel computing is a type of computing architecture in which numerous processors 

work together to do a series of smaller tasks that are broken down from a bigger, more 

difficult problem, and this is crucial when training a deep convolutional network with 

a large amount of data. However, using Google Colab does have a few drawbacks 
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such as every time starting a new test or session, the DeepLabCut library must be re-

installed albeit with a single line of code. The biggest drawback when using Google 

Colab is that users can only stay connected to Google’s computing resources such as 

the GPU and the runtimes with the maximum duration of 24 hours for the paid version 

called Colab Pro (the version that was used for this project). 

3.3 Dataset Preparation 

3.3.1 Data Gathering 

The type of data that is needed to train a keypoint detection AI that uses a deep 

convolutional network is in the form of a short video of poultry and the type of poultry 

that this paper is focusing on is chicken. This is because out of all available poultry 

meat sources such as turkey, duck, quail, and many others, chicken is the most 

consumed poultry meat [35]. The attribute of this short video is that it would mainly 

consist of one main chicken in a frame and this chicken will do various kinds of poses 

such as roaming, pecking, or scratching. Before the augmentation process, a total of 

19 short videos were gathered that are well-suited with the attributes that were 

mentioned beforehand. These short videos were collected from various websites 

available online such as Pixabay, Pexels, YouTube, and Shutterstock. Figure 3.3 is 

showing a frame of a video that was obtained from Pixabay. 

 

FIGURE 3.3 A frame of a video from the dataset 
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3.3.2 Data Augmentation 

Data Augmentation is a term that refers to a range of measures for expanding the size 

or quality of training datasets so that robust Deep Learning models can be generated 

using them [36]. Without data augmentation, only 19 short videos were gathered and 

from these 19 short videos only 20 frames (default number that the software in the 

next section will use) from each video will be used and that will total to 380 frames 

that are available to use for training. Do note that, the Deep Convolutional Network 

only uses frames that are extracted from each video in the dataset and not the video 

itself. When comparing the number of frames that is available for this paper to one of 

the works that were in the literature review, C. Fang et al. [31] uses 556 frames and 

only use five to six frames from each video, and with that, it is clear that without data 

augmentation, this project video dataset is small and not diverse. The meaning of not 

diverse here is when the deep convolutional network was trained using too much 

frame from the same video which would cause the deep convolutional network to 

recognize a smaller pool of features. 

If this project were to follow C.  Fang et al. [31] number of training frames per 

video, this project will have a significantly lower total number of frames that are 

available to train the deep convolutional network. Hence, the dataset of this project 

must go through an augmentation process to expand the number of videos available 

which would mean an increase in the total number of training frames while also 

decreasing the number of frames per video needed to be used for training to increase 

the diversity of the dataset and increase the pool of features that the network could 

recognize. One augmentation process that is relevant to the type of content that the 

video dataset of this project has, is the horizontal flipping process and this process is 

done manually using an online tool accessible from any browser called Animaker. 

Flipping the image protects the image's features while rearranging the pixels [37]. 

With the augmentation process, the video dataset was increased from 19 to 28, and not 

all videos undergo the flipping process. Figure 3.4 shows two frames that were 

extracted from an original and a flipped of the same video that is in the video dataset. 
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(a) Original frame 

 
                           (b) Horizontally flipped frame 

FIGURE 3.4 Original and flipped frame of the same video 

3.3.3 Labelling Data  

3.3.3.1 Creating project 

 The data was labelled using the DeepLabCut (DLC) graphical user interface (GUI) 

which was mentioned in section 3.2.1.1. However, before the labelling process, the 

first step of using the DLC GUI is to create a project by filling in the details needed to 

create the project. The DLC interface when creating a project is shown in Figure 3.5 

alongside an example of the needed details that are already been filled in. The details 

needed to create a project using the DLC GUI would be the name of the project, the 

name of the experimenter (the labeller), and the directory file where the project (the 

labelled frames) would be saved at.  
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FIGURE 3.5 New project interface 

It is also important to note that this is the point where the collected short 

videos of poultry are selected into DeepLabCut and from the example shown in Figure 

3.5, 25 videos were loaded onto DLC. The checkbox for multi-animal detection is left 

unchecked as this project is only focusing on single animal detection and the box for 

copy video is checked for ease of use when inferencing. When the project is created 

successfully, the project file will contain four folders and one configuration file as 

shown in Figure 3.6. The dlc-models file in Figure 3.6 is where the trained network 

alongside the trained weights and parameters is saved, the labelled-data and the 

training-datasets file is where the extracted frame is saved and where the dataset is 

split into training and test dataset respectively. The project file will also copy the 

selected videos from the dataset into the project folder so that it is easier to access the 

videos later for the inferencing process. Lastly, the config file is where the crucial 

parameters related to the training process and the dataset label can be manipulated. 



24  

 

FIGURE 3.6 Newly created project folder 

3.3.3.2 Labelling convention and tool 

After the project is successfully created, a few parameters are within the config.yaml 

file were changed to adapt for this project dataset. The config.yaml file contains and 

determines the different parameters for creating the training set file and evaluation 

results. A few parameters that were changed and that are relevant to the dataset 

creation are the numframes2pick bodyparts, skeleton, and the description of these 

important parameters is shown in Table 3.1. 

TABLE 3.1 Parameters1 of the config file 

Parameters Description 

numframes2pick An integer that specifies the number of frames extracted from each video in the 

dataset. The default is 20. 

bodyparts A list containing the points to be tracked. 

skeleton The connection between each tracked body part. 

colormap The colour scheme of each tracked body part.  

dotsize The size of the marker when labelling. Default value is 12. 

alphavalue The transparency of the plotted labels. Default value is 0.5. 

TrainingFraction Two-digit floating-point number in the range [0-1], the ratio used to split the 

dataset into train and test. Default value is 0.95. 

default_net_type Specifies which pre-trained model to use. Default value is Resnet-50 

 
1 The complete list of parameters of the config.yaml file and its description is included in Appendix 

A.2. 
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The first important parameter that is changed is the numframes2pick, which 

specifies the number of frames to be extracted from each video in the dataset. As 

mentioned in the section about the data augmentation (section 3.3.2), the lower the 

number of frames used from each video while also maintaining the quantity of the 

total number of frames used for training will make the dataset more diverse which 

would help the deep neural network to recognize a larger pool of features. Hence, this 

parameter (numframes2pick) that was used in the series of the test presented in the 

next chapter is lower than 20 which is the default number set by DeepLabCut. 

The next two related crucial parameters for the dataset preparation are the 

bodyparts and the skeleton parameters. The bodyparts parameter within the config file 

specifies the bodyparts that this project is tracking. This project is tracking five main 

body parts of poultry chicken which are the center body of the chicken, the head, the 

tail base, the left, and the right leg. If we were to compare the number of feature points 

tracked by Fang et al. [31] in their paper which is 10 (see Fig 2.3 from chapter 2), they 

are tracking double the feature points that are tracked by this project. Figure 3.7 is 

showing how the tracked body parts were labelled for this project. 

 

FIGURE 3.7 Labelling convention used for chicken 
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The reasoning behind choosing a significantly lesser number of feature points 

to track in this project is because this project has significantly less resource in terms of 

the available dataset and time constraints to properly hand-labelled those feature 

points for each extracted frame than compared to the resource available (especially in 

the number of personnel available to assist in hand-labelling the dataset) in the paper 

mentioned earlier [31]. The main risk if this project were to follow the paper 

mentioned earlier is that, without any access to an expert that can accurately identify 

the various body parts of poultry in a variety of backgrounds and postures, there is a 

risk of labelling inconsistency which may contribute to higher error in predicting the 

location of the chicken’s body keypoints. Thus, this project is tracking only the body 

parts of the chicken that is easy to identify and label.  

Table 3.2-3.3 is showing the differences between the default and the custom 

parameters that were used to replace the default parameters for both bodyparts and 

skeleton. The custom parameter for the bodyparts in Table 3.2 is how the body parts 

of the chicken that this project is trying to track were defined. The custom skeleton 

parameter shown in Table 3.3 is how the connection between the different body parts 

of the chicken was defined. The skeleton parameter is providing the deep neural 

network the information on how each of the tracked body parts is connected. Do note 

that both the dotvalue and alphavalue parameter were not changed and remained at the 

default value as stated in Table 3.1 earlier while the colormap parameter that was 

commonly used in this project is rainbow and plasma, the colormap parameter is the 

parameter that specifies the colour scheme of each label for each body parts (see Fig 

3.8). However, for the TrainingFraction (a value that specifies the splitting ratio 

between the train and test dataset) and the default_net_type (the pretrained network 

that was used) parameter is dependant on the case of each test that was done and 

presented in chapter 4. For each series of tests, the TrainingFraction and the 

default_net_type parameter that was used will be specified and justified based on the 

different aims of each test. 
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TABLE 3.2 Parameter for bodyparts 

Default bodyparts  Custom bodyparts 

bodyparts: 

- bodypart1 

- bodypart2 

- bodypart3 

- objectA 

bodyparts: 

- center 

- head 

- tail 

- leftleg 

- rightleg 

TABLE 3.3 Parameter for skeleton 

Default skeleton Custom bodyparts 

skeleton: 

- - bodypart1 

  - bodypart2 

- - objectA 

  - bodypart3 

 

skeleton: 

- - center 

  - head 

- - center 

  - tail 

- - center 

  - leftleg 

- - center 

  - rightleg 

 

FIGURE 3.8 Colormap options 

To prepare the dataset, DeepLabCut will extract a certain number of frames 

from each video in the dataset based on the numframes2pick that was specified within 

the Config file and labelled individually using the DeepLabCut labelling GUI. The 

labelling interface that was used for this project is shown in Figure 3.9. To label a 

frame, the cursor is placed at the point of the chicken’s body that is itended to be 

marked followed with a right click of mouse, this will place the cursor at the intended 

point and to adjust to position of the marker, the marked point can be drag by holding 
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the right click of the mouse onto the desired point. The sequence of labelling the 

chicken’s body parts is following the custom bodyparts parameter that is stated in the 

Config file (see Tab 3.2). 

 After finishing the labelling process on one frame, the same process is 

repeated for the remaining extracted frames by clicking the next button shown in the 

GUI (see Fig 3.9) and when frames from one video are done the process is to move 

onto the next frames of another video until all the frames from all the loaded training 

video are done being labelled. From the labelling GUI, there are a few tools and 

features that were used to assist the labelling process such as the zoom and pan feature 

which is useful when trying to be very accurate when placing the label onto the 

chicken’s body. When the labelling process is done, the folder within the project file 

(as in Fig. 3.6) named labeled-data will contain multiple folders according to the 

number of videos used and within the video folder, it will contain the extracted frames 

in .png format, the coordinate of the labelled marker in an excel sheet and a .h5 file 

which is a Hierarchical Data Format (HDF) which contain multidimensional arrays 

data on the labelled markers (see Fig. 3.10 for of example of the labelled dataset 

folder).  Finally, the entirety of the project folder is exported onto Google Drive to 

work with Google Colab. 

 

FIGURE 3.9 DeepLabCut labelling interface 
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FIGURE 3.10 Contents of labelled-data folder 

Before initiating the Google Colab notebook, a few Pythons third-party 

libraries must be installed such as the DeepLabCut, TensorFlow, and OpenCV library 

followed by changing the runtime type to connect to Google’s GPU and finally, the 

Google Colab must be connected and mounted to the Google Drive where the project 

folder (as in Fig. 3.6) is exported. To view the necessary installation, and the proper 

method to summon the project folder alongside the method to connect Colab with 

Google Drive, view this GitHub2 repository created for this project to avoid cluttering 

this thesis with installation codes. After all, the needed library is installed and the 

project folder configuration is done, the DeepLabCut code shown in Figure 3.11 is 

where the labels from the extracted frames are merged into a single .h5 file, and do 

note that only videos that are included within the config.yaml (as in Fig. 3.6) is used to 

create this dataset, the code in Figure 3.11 is also where the frames dataset is split into 

train and test datasets, and the frames are chosen randomly based on the 

TrainingFraction parameters (as in Table 3.1) that are stated within the config.yaml 

 
2 The necessary installation and folder configuration: https://github.com/amrhkm/POULTRY-POSE-

DEEPLABCUTV2/blob/main/startingwith_DeepLabCut.ipynb  

The dataset is also available to be accessed by the public, see Appendix B.1 
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file. Using the code in Figure 3.11, conversion is also done to the dataset to make it 

compatible with a Unix system (Google Colab) and during this process, the pretrained 

network that is intended to be used (as an example in Fig 3.11, pretrained Resnet-101 

is downloaded) is downloaded to prepare for the training process using the training 

dataset created earlier. To conclude about the dataset, the creation of this poultry 

keypoints dataset is to fulfil the first objective of this project, which is to prepare a 

dataset that is annotated with the poultry’s body keypoints. 

 

FIGURE 3.11 DeepLabCut code for training dataset creation 

3.4 Training the Deep Convolutional Network 

3.4.1 Transfer Learning 

Transfer learning is the main method that is adapted for this project, transfer learning 

is a deep learning method that is repurposing an already developed deep learning 

model (done by other researchers), created and trained to work on a specific task to 

work on a different set of tasks that then what it was intended to do (this project). This 

project can be classified as a computer vision task and to be able to develop a 

competent deep convolutional neural network from the ground up will require a lot of 

time resources, computing power, data, and most importantly the knowledge and skills 

needed to tune and modify those deep neural network layers.  

Paper [38] stated that in deep learning, transfer learning only works if the 

model features learned in the first task are general and all of the supported models by 

DeepLabCut that is used in this project are all pretrained on a general dataset called 

ImageNet that contains over 14 million annotated image with 1000 different classes. 
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By training the supported model using the ImageNet dataset, the robustness of the 

supported models is increased and this is further supported in paper [39], which uses 

DeepLabCut to estimate the pose of horses. The paper mentioned earlier [39], has 

done a test that shows using DeepLabCut with a pretrained model is more robust and 

resulted in less error than the ones that are trained from scratch. In this project, three 

pretrained models or network that is supported by DeepLabCut is tested to find the 

suitable network that can detect keypoints on a chicken (results are presented in 

chapter 4, test 4.2). 

3.4.2 Hyperparameters  

Hyperparameters are configuration variables whose values will determine how the 

network is trained and these values are required for estimating the model (network) 

parameters. The prefix hyper is to show that they are the 'top-level' parameters that 

control the learning process and the model parameters that come from it. 

Hyperparameters are external to the model as the values are not saved within the 

model and these hyperparameters must be set manually before the training process, 

hyperparameters are independent of the dataset as the hyperparameters are not learned 

from the dataset. The chosen hyperparameters will determine the speed and the 

accuracy of the training process and to obtain the most suitable hyperparameters, the 

values are estimated through hyperparameters tuning and in this project, the 

hyperparameters are tuned through a series of trial-and-error tests (presented in 

chapter 4) and the default values of the hyperparameters that were set by DeepLabCut 

is used as a reference point on improving the model. 

3.4.2.1 Learning rate 

The learning rate is a hyperparameter that governs how quickly a model updates its 

parameters in response to the expected error. A very low learning rate may result in a 

long training process as it will need more training iterations which will also consume 

more memory capacity resources with a risk that the training process may become 
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stalled, whereas a value too large may result in learning a set of weights too fast which 

could cause an unstable training process [40]. Thus, finding a suitable learning rate is 

crucial and challenging. Figure 3.12 is presenting the different scenarios that are 

possible when configuring the learning rate parameter.  

 

FIGURE 3.12 Various effects of learning rate on loss [41] 

Within DeepLabCut, to alter the default pre-set learning rate, it must be done 

through a text file named pose_cfg.yaml located within the train subdirectory within 

the dlc-models directory of the project folder (as in Fig. 3.6). The pose_cfg.yaml file3 

contains some parameters that control the training process of the network. Figure 3.13 

is showing how the learning rate is stated within the pose_cfg.yaml file and Table 3.4 

is showing the meaning of the learning rate parameter that is shown in Figure 3.13. 

From Table 3.4 the default learning rate set by DeepLabCut changes continuously 

based on the current training iterations until around one million training iterations. 

Hence, a custom learning rate is tested (results in chapter 4.4) to find the suitable 

learning rate based on the network and the training iterations used for this project. 

 
3 The full available parameters within the pose_cgf.yaml  file is shown in Appendix A.3 
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FIGURE 3.13 Default learning rate within the pose_cfg.yaml file 

TABLE 3.4 Default dynamic learning rate 

Learning Rates Training iterations range 

0.005 0<iterations<10,000 

0.02 10,001<iterations<430,000 

0.002 430,001<iterations<730,000 

0.001 730,001<iterations<1,030,000 

3.4.2.2 Train-test split ratio 

The train and test splitting ratio determines how much of the total dataset is used for 

training and testing and after splitting these datasets, there would be a training dataset 

and test dataset. The training dataset is fed into the pretrained model for the training 

process and this training process is done to fit the pretrained deep convolutional 

network model to the labelled chicken frames dataset. The test dataset is not used at all 

during the training process which would mean that the pretrained model never learns 

the features or the label from the frames that are in the test dataset.  

The test dataset is only used after the training process has been completed and 

during this process, all the updated parameters (such as the weights and biases) that 

the network obtained from the training process is used to make keypoints prediction 

on the test dataset and the accuracy of the model on the test dataset would present a 

rough estimate on how accurate is the performance of the trained network/model 

against new and unseen data which could also mean how accurate the model is for a 

real-world environment implementation. In DeepLabCut the splitting ratio is 
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determined using the TrainingFraction parameter (as in Table 3.1) stated within the 

config.yaml file and the commands used within Google Colab to split the dataset are 

shown in Figure 3.11 earlier.  

3.3.2.3 Training iteration 

As mentioned earlier, this project is using transfer learning to make use of other 

researchers' trained networks and adapt their networks to fit the objectives of this 

project. Hence, the training process in this project is referring to the process where the 

training dataset that is specific to this project is fed into the deep convolutional 

network and during this process, the network will observe the labels and features 

present in the training dataset and use the observed features to updates its pretrained 

parameters such as their weights and biases to fit the task of this project. In layman's 

terms, training is a process of finding the suitable weights and biases that are good for 

the task.  

Weights and biases are called deep neural parameters which are different from 

hyperparameters. Parameters are internal to the network and the value of these 

parameters is not set manually and unlike hyperparameters whose value will stay the 

same throughout the entire training process, parameters are learned and are constantly 

updated during the training process through each training iterations. The parameters, 

unlike the hyperparameters they are dependent on the dataset, and the final value of 

these parameters will determine the performance of this network on unseen data (test 

dataset or real-world application).  

In DeepLabCut, the term one training iteration would mean a cycle where the 

network has seen (learn its features and label) all the frames within the training dataset 

once. The number of iterations said by the developer of DeepLabCut where the loss 

will start to converge (when the loss has plateaued) is more than 200,000 to 400,000 

iterations [42]. Hence, this project used the range of the number of iterations said by 

the developer of DeepLabCut where the loss will start to converge. To train the 

pretrained network with the labels in the training dataset, the command in Figure 3.14 
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was run on Google Collab and the number of iterations used is based on the aim of the 

test presented in chapter 4. The full available parameters for the codes in Figure 3.14 

are available in this GitHub repository4 under the network training section. During the 

training process snapshots of the current iterations are automatically uploaded into the 

training subdirectory of dlc-models file (as in Fig 3.6).  

 

FIGURE 3.14 DeepLabCut code for network training 

These snapshots contain the current state of the trained network parameters at a 

particular training iteration (see Fig 3.15 for the example of the snapshot file at 

training iteration 300,100) and because this project was saved in Google Drive that has 

a limit to the number of memories it can store, only the 10 most recent training 

iterations snapshots are saved within the dlc-models folder and the rest is transferred 

to the bin. Some of the useful snapshots that is in the bin were restored to project 

folder for the evaluation process. These snapshots are crucial for evaluating the 

network performance at a certain training iteration (as the test presented in chapter 4).  

 

FIGURE 3.15 Example of the snapshot file 

 
4 Parameters of DLC training code https://github.com/DeepLabCut/DeepLabCut/wiki/DOCSTRINGS# 
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3.5 Network Performance  

3.5.1 Evaluation and the Metrics Used 

3.5.1.1 Pixel error and confidence level 

For object classification task using any variants of the neural networks (NN), the most 

common metrics used to evaluate such network is accuracy and error and this easier to 

do for a classification process because the ground truth for each object that the neural 

network is tasked to identify is available [43]. However, for a keypoint detection task 

on a video, such ground truth is hard to provide, and the only ground truth that this 

project is able to provide is the individually manual label that is plotted onto the 

chicken’s body on the extracted frames dataset. Hence, Using DeepLabCut, the main 

way that the trained network was evaluated by computing its mean average Euclidean 

error (MAE) or simply put, the average distances in pixels between the manual label 

(the ground truth) that is done during the labelling process in chapter 3.3.3 and the 

label predicted by the trained network [42]. This average distance between the manual 

and predicted labels are called pixel error and this evaluation process was done to both 

train and test dataset and therefore, there will be a pixel train error and pixel test error 

for a network. 

 Figure 3.16-3.17  is showing the DeepLabCut code that was used on Google Collab to 

evaluate the trained network and the output of the code. If the plotting parameter were 

set to true as in Figure 3.16, it will plot the network predicted label against the manual 

label as in Figure 3.18 where the human label is plotted as (+), and the network 

predicted label is plotted as a dot. Notice that in the output of the evaluation code there 

is a parameter call p-cutoff, this parameter is called a confidence level threshold and is 

used to increase the accuracy during inferencing and will be discussed in detail in 

chapter 3.6.1. 

deeplabcut.evaluate_network(config_path, plotting=True) 

FIGURE 3.16 DeepLabCut network evaluation code 
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FIGURE 3.17 Output of DeepLabCut network evaluation code 

 

FIGURE 3.18 Human labels plots against network predicted plots 

3.5.1.2 Training loss 

The training loss in DeepLabCut is using the standard cross-entropy loss function 

shown in equation 1 of Figure 3.19 to predict the pixel-wise class probability and the 

location refinement error (a form of location refinement for the final coordinate) via 

Huber loss with a weight of 0.05 loss was used to regress predicted location to actual 

location using equation 2 in Figure 3.19 with (δ = 1) [43]. These losses were combined 

and optimized by Stochastic Gradient Descent (SGD) to obtain the tuned parameters 

for a network that is suitable for a chicken’s body keypoint detection task. 
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FIGURE 3.19 Training loss equations  [43] 

3.6 Keypoints Prediction on a Video 

This section will go into detail on the DeepLabCut codes and how DeepLabCut was 

used to do the chicken’s body keypoints prediction for a video of a chicken (will work 

with a video that is within the dataset or not) using the trained network. Using a 

trained network to do prediction on a video that is not within the dataset (unseen data) 

is called inferencing. Ideally, this project aimed to achieve a network that is good at 

inferencing because if a network is good at inferencing this would make the network 

even more suitable for a real-world environment which would add more value to this 

study. 

3.6.1 Confident level or likelihood 

As mentioned in chapter 3.5.1.1, the main metrics used to evaluate the trained network 

is the pixel error or the MAE, this MAE is saved alongside a parameter called a 

confidence level or likelihood in a comma-separated file. The confidence level is a 

positive integer value that is stating the level of confidence that network had in 

making a particular keypoint prediction for each of the tracked chicken’s body parts. 

The range of this confidence level value is starting from zero which is a very low 

confident prediction to one which is a very high confident prediction. Using this 

confidence level, DeepLabCut is showing its strength if the network is sufficiently 

trained, it will have a probabilistic output of the scoremap that can be used as guide to 

reliably report when a body part is visible within the frame [42]. 
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From chapter 3.5.1.1 and Figure 3.17, there is parameter called p-cutoff which 

is a confidence level threshold and by default this value is set to 0.1, this p-cutoff 

parameter is available within the config.yaml file (see appendix A.2). This parameter 

is used to increase the accuracy of the network by reducing the keypoint prediction 

that has a low confident value. The way the p-cutoff parameter work is that if a 

prediction has a confidence level higher than the P-cutoff (confident >p-cutoff) that 

would mean that it is a confident prediction. However, if a prediction confidence level 

is lower than the P-cutoff (confident <p-cutoff), that would mean that the prediction 

has a low level of confidence. Hence, if a keypoint prediction has a confident level 

below the p-cutoff, the network will eliminate the prediction thus reducing the pixel 

error and during keypoint prediction on a video, the prediction with a confident level 

below the p-cutoff will not be shown. Using the network evaluation code in Figure 

3.17 we could see the differences between the network prediction that has a high 

confident level and low confident level against the human label (see Fig. 3.20-3.21). 

From Figure 3.20-3.21, the human label is in the plotted as (+) and the predicted label 

that has high confident (confident > P-cutoff) are plotted as a dot (.) and the prediction 

label that has lower confident level (confident < p-cutoff) are plotted as an (X). 

 

FIGURE 3.20 Human label against low confident network prediction 
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FIGURE 3.21 Human label against high confident network prediction 

3.6.2 Create Predicted Labelled Video 

The code shown in Figure 3.22 was used to make keypoint predictions using the 

trained network. The output of the code from Figure 3.22 is saved within the videos 

file of the project folder (see Fig. 3.6) and the output is stored as a Multi-index Pandas 

array that is stored in an efficient Hierarchical Data Format (HDF) which contains the 

name of the network used, names of each tracked body parts, (x,y) label position in 

pixels, and the confidence level for each frame per body part.  

 

deeplabcut.analyze_videos(path_config_file, videofile_path, videotype=mp4) 

FIGURE 3.22 DeepLabCut code making keypoint prediction 

The code in Figure 3.23 is used to analyse the trajectories of the predicted keypoints 

and the output of this line of codes is saved at plot-trajectories within the videos 

folder. Using this line of code, the movement of the predicted keypoints throughout 

the whole duration of the video is plotted onto an XY-axis (as in Fig. 3.24 (a))  

alongside the confidence level/likelihood of each body parts throughout the entire 
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video timeframe (as in Fig. 3.24 (b)). Finally, to create a video using the keypoints 

that is predicted by the trained network, the code in Figure 3.25 was used and an 

example of a frame of the output video is shown in Figure 3.26. 

deeplabcut.plot_trajectories(path_config_file, videofile_path, videotype=mp4) 

FIGURE 3.23 DeepLabCut code for plotting keypoints trajectories 

 
(a) Keypoint movements across frames 

 
(b) Confidence level across the frames 

FIGURE 3.24 Trajectories plots 

deeplabcut.create_labeled_video(path_config_file,videofile_path,videotype=mp) 

FIGURE 3.25 DeepLabCut code for creating a video with predicted keypoints 
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FIGURE 3.26 Output video using the trained network 

3.7 Flowchart 

The flowchart below acts as a summary of the entire methodology chapter of this 

project. 

 

FIGURE 3.27 Project flowchart 
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CHAPTER 4  

OBSERVATION AND RESULTS 

4.1 Overview 

This chapter comprises the results achieved from carrying out a series of tests along 

with a detailed explanation for each case hyperparameter that was changed. This 

chapter aims to find the best hyperparameters (as discussed in chapter 3.4.2) and to 

analyze and evaluate the performance of the trained network under certain 

hyperparameters. This chapter will make use of the metrics and methods explained in 

chapter 3.5. 

4.2 Performance of Resnet-50, Resnet-101, and Mobilenet V2 

Resnet-50, Resnet-101, and Mobilenet V2 is the pretrained network supported by 

DeepLabCut. All three of the tested networks have a different architecture which 

could be an advantage or disadvantage to the type of dataset this project is using. 

Hence, this test aims to find the best-supported network that is suitable for the 

chicken’s keypoint detection task of this project. To find the best performing network, 

a few hyperparameters were set constant throughout all three networks.  

Below are the hyperparameters that were constant across all three tested 

networks and the result for this test is presented in Table 4.2-4.4. All three of the 

tested networks were evaluated at three different training iterations which are at 

100,000, 200,000, and 300,000 iterations. Used 80% of the frame dataset for training 

and 20% for testing from a total frame of 256 frames. Used Stochastic Gradient 

Descent (SGD) as default network optimizer that was set by DeepLabCut. Finally, this 

test used the default dynamic learning rate set by DeepLabCut (see Table 4.1). 
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TABLE 4.1 Default dynamic learning rate 

Learning 

Rates 

Training iterations range 

0.005 0<iterations<10,000 

0.02 10,001<iterations<430,000 

0.002 430,001<iterations<730,000 

0.001 730,001<iterations<1,030,000 

TABLE 4.2 Performance at 100,000 training iterations 

Network Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Resnet-50 0.0049 4.19 16.8 12.61 

Resnet-101 0.0041 7.56 16.77 9.21 

Mobilenet V2 0.0045  8.22 32.54 24.32 

TABLE 4.3 Performance at 200,000 training iterations 

Network Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Resnet-50 0.0038 3.70 11.77 8.07 

Resnet-101 0.0029 3.22 11.62 8.40 

Mobilenet V2 0.0032  5.10 26.44 21.34 

TABLE 4.4 Performance at 300,000 training iterations 

Network Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Resnet-50 0.0031 3.4 12.72 9.32 

Resnet-101 0.0028 2.92 10.52 7.60 

Mobilenet V2 0.0025  3.82 18.35 14.53 
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4.3 Testing Different Training and Test Dataset Split Ratio 

The test in this section was done using the Resnet-101 (see Chapter 5.2 for the 

reasoning behind this choice) network under the default dynamic learning rate (as in 

Table 4.1) and the default network optimizer (SGD) set by DeepLabCut to find the 

best train and testing dataset split ratio that can be used on the final recommended 

Model, the number of frames used for each splitting ration is shown in Table 4.5. The 

network was evaluated at three different training iterations to obtain a better 

correlation between the pixel error and the dataset splitting ratio over the increasing 

number of training iterations. Table 4.6-4.8 shows the results of this test. 

TABLE 4.5 Frames used for each splitting ratio 

Training: 

Test 

Training 

frames 

Test frames Total frames 

95: 5 243 13 256 

80: 20 205 51 256 

70: 30 179 77 256 

TABLE 4.6 Performance at 100,000 iterations 

Training: 

Test 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of 

Test-Train pixel error 

95: 5 0.0042 7.38 15.34 7.96 

80: 20 0.0041 7.56 16.77 9.21 

70: 30 0.0034 4.06 11.94 7.88 

TABLE 4.7 Performance at 200,000 iterations 

Training: 

Test 

Training loss Train pixel 

error (pixels) 

Test Pixel 

error (pixels) 

The discrepancy of 

Test-Train pixel error 

95: 5 0.0030 3.93 16.88 12.95 

80: 20 0.0029 3.22 11.62 8.40 

70: 30 0.0027 3.02 10.10 7.08 
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TABLE 4.8 Performance at 300,000 iterations 

Training: 

Test 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of 

Test-Train pixel error 

95:5 0.0025 3.57 14.82 11.25 

80:20 0.0028 2.92 10.52 7.60 

70:30 0.0023 2.31 10.05 7.74 

4.4  Network Performance of Default and Custom Learning Rate 

This test aims to find the best custom learning rate that is suitable for the labelled 

chicken dataset that is used in this project and compare it with the default learning rate 

set by DeepLabCut using the best network, and the best train and test splitting ratio 

(70:30) obtained from the test 4.2 and 4.3 earlier. The default and custom learning 

rates used in this test are presented in Table 4.9-10 respectively and the results are 

presented in Table 4.11-13. 

The custom learning rate that is used in this test is a slight modification of the default 

learning rate. From Table 4.9, we could see that the training iteration range for the 

default learning rate is larger as the range stopped at around one million iterations, and 

to cater to the learning rates with the number of training iterations used in this project, 

a modification of the default learning rate is done (as in Table 4.10). Due to the short 

range of training iterations being used in this test, the final learning rate in the last row 

of Table 4.10 was increased from 0.002, 0.001 (as in the last two rows of  Table 4.9) 

to 0.005. 

The reason that this project is not testing up to a million training iterations (as 

in the default learning rate in Table 4.9) is that to train a network for 300,000 

iterations using DeepLabCut and Google Colab would take an average of 11 hours. 

Hence, training a network until a million iterations for each test would not be practical 

with the time constraints of this project and a million iterations is a relatively large 

number of training iterations compared to the size of the dataset that this project has 

(256 frames). 
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TABLE 4.9 Default dynamic learning rate 

Learning 

Rates 

Training iterations range 

0.005 0<iterations<10,000 

0.02 10,001<iterations<430,000 

0.002 430,001<iterations<730,000 

0.001 730,001<iterations<1,030,000 

TABLE 4.10 Custom dynamic learning rate 

Learning 

Rates 

Training iterations range 

0.005 0<iterations<10,000 

0.02 10,001<iterations<214,400 

0.005 214,401<iterations<300,000 

TABLE 4.11 Performance at 100,000 iterations 

Learning rate 

type 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Default 0.0034 4.06 11.94 7.88 

Custom  0.0037 3.00 9.38 6.38 

TABLE 4.12 Performance at 200,000 iterations 

Learning rate 

type 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Default 0.0027 3.02 10.10 7.08 

Custom  0.0025 2.92 9.02 6.1 

TABLE 4.13 Performance at 300,000 iterations 

Learning rate 

type 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

Default 0.0023 2.31 10.05 7.74 

Custom  0.0021 2.74 9.61 6.87 
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4.5 Custom Model Comparison 

In this test, two custom models each using different custom hyperparameters were 

tested. This test aims to find the best custom model that this study can produce. The 

first custom model is the same custom model used in the previous test 4.4 and for this 

test, it is called custom model 1 (CM1). The second custom model used here is called 

custom model 2 (CM2) and it almost uses the same hyperparameters as CM1 with the 

major difference is that CM2 is using Resnet-50 instead of Resnet-101. Table 4.14 is 

summarising the differences in characteristics of CM1 and CM2. Both custom models 

were evaluated at 200,000 and 300,000 iterations. The result of this test is presented in 

Table 4.16-17. 

TABLE 4.14 Charactertics of CM1 and CM2 

Characteristics CM1 CM2 

Network Resnet-101 Resnet-50 

Learning rate Custom learning rate 

( as in Table 4.15) 

Custom learning rate 

( as in Table 4.15) 

Optimizer SGD (default) SGD (Default) 

Final training iterations 300,000 300,000 

Training: Test 70:30 80:20 

TABLE 4.15 Custom dynamic learning rate 

Learning 

Rates 

Training iterations range 

0.005 0<iterations<10,000 

0.02 10,001<iterations<214,400 

0.005 214,401<iterations<300,000 
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TABLE 4.16 Performance at 200,000 iterations 

Custom 

model 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

CM1 0.0025 2.92 9.02 6.1 

CM2 0.0037 3.18 7.83 4.65 

TABLE 4.17 Performance at 300,000 iterations 

Custom 

model 

Training loss Train pixel 

error (pixels) 

Test pixel 

error (pixels) 

The discrepancy of Test-

Train pixel error 

CM1 0.0021 2.74 9.61 7.74 

CM2 0.0023 2.77 7.69 4.92 
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CHAPTER 5  

ANALYSIS AND DISCUSSION 

5.1 Important Concept for Discussion 

5.1.1 Overfitting 

Overfitting is a concept in data science and overfitting occurs when the trained 

network has a significantly better accuracy at predicting on the training dataset (the 

dataset that is used to teach the network) and very low accuracy on the test dataset 

(unseen data). Overfitting will cause the network to be bad at generalization on new 

unseen data which is an important factor to consider if one were to deploy the network 

for real-world environment use. Thus, overfitting in this discussion can also be said as 

having very a high discrepancy between the test and train pixel error.  

5.1.2 Pixel Error Categorization 

Pixel error is the average distance between the hand-labelled (manual label) and the 

label predicted by the trained network. Thus, a good and accurate keypoint prediction 

network would have a low average distance between the human label and the 

predicted label and can also be said as having low pixel error. As of the time that this 

thesis is written, no formal documentation can be found on the range of pixel error that 

can be considered as good or bad. However, from experience and observation of the 

inferencing process (the video output with the predicted keypoints) using any of the 

trained networks in this project and from reading online forums from GitHub and 

Stack Overflow, the author would describe the characteristic of the network prediction 

based on pixel error range in Table 5.1. The first network used the default learning 

rate (refer Table  
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TABLE 5.1 Pixel error category 

Pixel error 

range 

Categorization Description 

Below 3.7 Good Would accurately detect all keypoints and 

no noticeable jitter (repeatedly showing 

and not showing the keypoint predictions) 

Between 3.7 

and 5.0 

Mediocre Slightly less accurate prediction but with 

noticeable jitter 

Above 5.0 Bad Incorrect prediction or not showing any 

prediction at all 

5.2 Best Network Supported by DeepLabCut 

From test 4.2 (see Table 4.2-4), we could see Resnet-101 has the lowest train and test 

pixel error for all the training iterations that it was evaluated on (see Fig 5.1-2). This 

would mean under the default hyperparameters presented in the second paragraph of 

chapter 4.2, Resnet-101 has the best performance. Even though after 300,000 

iterations, Resnet-101 managed to achieve 2.92 for test and 10.52 for train pixel error 

which is the lowest pixel error out of the three networks that were tested, this does not 

that the pixel error that Resnet-101 managed to obtain in this test is good. 

 

FIGURE 5.1 Train pixel error across different network 
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FIGURE 5.2 Test pixel error across different network 

 

FIGURE 5.3 Discrepancy test-train across different network 
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was chosen to be the best network out of Resnet-50 and Mobilenet V2 is that it 

overfits less than all the other tested networks and this can be seen by Resnet-101 

being able to achieve a 7.6 discrepancy between the test and train pixel error after 

300,000 training iterations which are well below than the discrepancy achieved by the 

other networks (see Fig. 5.3). Hence, the tests in chapters 4.3 and 4.4 is using Resnet-

101 to find the best hyperparameters based on the aim of each corresponding test. 

5.3 Best Train and Test Splitting Ratio 

 

FIGURE 5.4 Discrepancy test-train across the different splitting ratio 
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 The network that used the 80:20 and 70:30 splitting ratio can be said as the 

least overfitted network. However, when comparing the average discrepancy5 between 

70:30 and 80:20, 70:30 has a much lower average discrepancy of 7.57 than the 

average discrepancy of 80:20 which is 8.40. Thus, it could be said that the network 

that used the 70:30 ratio has a lower average discrepancy which resulted in a 

performance that overfits less than other networks that used the 80:20 and 95:5 ratio. 

From this test also, it could be concluded that using a large network such as Resnet-

101 alongside a high amount of the dataset for training would make the network itself 

overfits very early on in the training process. Since using the 70:30 split ratio managed 

to get the best result, the next test presented in chapter 4.4 is using the 70:30 split ratio 

to compare the performance of a network that used custom learning rate and the 

network that used DeepLabCut default learning rate. From Table  

5.4 Custom Learning Rate Performance 

 

FIGURE 5.5 Discrepancy test-train across different learning rates 
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This section of the discussion will discuss the result presented in chapter 4.4 which is 

a test to compare and observe the effect of using custom and default learning rates on 

the overfitting situation that occurs in the first two tests that were presented in chapter 

4. In the test presented in chapter 4.4 two network/models were tested under the same 

hyperparameters (presented in chapter 4.4) with the exemption of their learning rate. 

The see the default and custom learning, refer to Table 4.9-10 within chapter 4.4. 

From Figure 5.5, both networks had the smallest discrepancy between the pixel error 

of the test and train dataset during the 200,000 iterations. Figure 5.5 also shows that 

when both networks arrived at the 300,000-training iteration, the overfitting situation 

for both networks is worsened, and this showed by a slight increase in the discrepancy. 

 From Table 4.13, both networks managed achieved a train pixel error that can 

be categorized as good (based on the categorization method in Table 5.1). However, 

both networks perform poorly on the test dataset as both networks obtain a test pixel 

error that is categorized as bad. This would suggest that while using the custom 

learning rate as in Table 4.10, may improve on the overfitting problem, the test pixel 

error is still large and cannot be considered as good. Based on test 4.4, it can be 

concluded that the custom learning has resulted in better results than the default 

learning rate for the kind of dataset that Resnet-101 is trained with. However, the peak 

performance of both (where it overfits less) networks is when the training iterations is 

less than 300,000. 

5.5 Best Performing Custom Model 

In the last test done in chapter 4.5, the network comparison was done between two 

custom models. The first model named custom model 1 (CM1) uses the same model 

that uses the custom learning rate in chapter test 4.4. The second custom model named 

(CM2) has a slight difference in that it used Resnet-50 as the network, and it also used 

80:20 training and test split ratio. The full characteristics of CM1 and CM2 alongside 

the used hyperparameters are available in Table 4.14. From the first test (chapter 4.2) 

and by observing the trend in Figure 5.1-3, Resnet-50 and Resnet-101 has an almost 
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similar performance in terms of their train and test pixel error and the test-train 

discrepancy. However, during the first test Resnet-101 was deemed as the best 

network due to the lowest value of test-train discrepancy which is an indicator that 

Resnet-101 overfits less than Resnet-50. 

TABLE 5.2 Architecture of different Resnet variants [44] 

 

In the second and the third test, it has been shown that training Resnet-101 

using a 70:30 dataset splitting ratio and using the custom learning rate (as in Table 

4.10) has managed to lower the discrepancy between the test and train pixel error. 

However, the main problem that persisted with Resnet-101 throughout all the tests is 

that its test pixel error or the performance of Resnet-101 on new unseen data has been 

bad with the lower test pixel error for a model that used Resnet-101 being 9.02. 

Hence, in the last test Resnet-50 was chosen to be the comparison network to use 

against Resnet-101 because Resnet-50 has an almost similar architecture but with a 

much simpler architecture than Resnet-101. The complex network has a higher 

capacity to process data and as claimed by Jason. B [45], a model can overfit because 

the network has the capacity to do so. Table 5.2 is showing the difference in the 

architecture of three variants of  ResNet. 
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FIGURE 5.6 Train pixel error across different custom models 

 

FIGURE 5.7 Test pixel error across different custom models 
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FIGURE 5.8 Discrepancy test-train across different custom models 

 Based on the results of the last test (see Fig. 5.6), all of the train pixel errors for 

both CM1 and CM2 can be considered as good. For the test pixel error, both networks 

obtained a pixel error that is categorized as bad however after 300,00 iterations CM2 

managed to achieve the lowest test pixel error from all the test that was conducted (see 

Fig. 5.7). Based on Figure 5.8, not only that CM2 manage to achieve the lowest test 

pixel error in this project when moving from 200,000 to 300,000 training iterations 

CM2’s already low discrepancy value of test-train pixel error only increased by 0.27. 

On the other hand, CM1 already has a higher discrepancy value at 200,000 iterations, 

and when assessed at 300,000 that value increased by 1.64.  

This is confirming two claims, the first claim made in discussion chapter 5.4 

which says that for the type of chicken keypoint dataset that is was trained on, the 

peak performance of Resnet-101 in this project is around 200,000 and the second 

claim that was presented earlier is that complex network (Resnet-101) is easier to 

overfit because it has the capacity to do so. The second objective of this project is to 

propose a model that can do poultry keypoint prediction on a video. Hence, the CM2 

is proposed however the current performance of CM2 is not accurate on new data but 

performs well on training data. Chapter 6 will talk about recommendations for any 

future work of the methods that could be adopted tuned the CM2 model further. 
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CHAPTER 6  

CONCLUSIONS  

To conclude, this thesis has gone through various methods that used different classes 

of Artificial Intelligence to estimate the health state or posture estimation of a poultry 

chicken. A method of pose estimation called DeepLabCut was adapted for this project 

and the series of steps taken to train a keypoint prediction neural network were also 

presented in detail. This project has managed to produce a poultry chicken dataset 

(available online, see appendix B.1) that is annotated with the body keypoints, which 

consist of around 29 videos of chicken and 256 labelled frames to fulfil the first 

objective of this project. Moving on, to fulfil the second objective, this project has 

managed to propose a deep learning model named CM2 (see chapter 5.5) that was 

tuned through a series of trial-and-error tests using a deep convolutional network that 

can detect poultry’s body keypoints on a video however as mentioned in the final part 

of chapter 5 this model managed to get good accuracy on the training dataset but have 

a poor performance on new unseen data. The series of tests presented in chapter 4 is 

where the performance of the proposed model was compared to different networks 

under various hyperparameters to fulfil the third and last objective of this project 

which is to compare the accuracy of the proposed models to other models with 

different hyperparameters and backbones. 

Based on the experience of using DeepLabCut, a pose estimation toolbox, 

there are a few limitations that the author experience, the first is the lack of 

accessibility to modify the network layers, the ability to add a dropout layer to the 

CM2 model network might increase its test accuracy and eliminate the overfitting 

problem. The dropout layer is a method to prevent the model from overfitting which 

will drop random neurons (randomly removing some of the learned weight and 

biases). Lacking the ability to change the neural network layers may be a huge 
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drawback for an experienced deep learning engineer. The second limitations are that it 

lacks available metrics that can be used to evaluate the model performance, the 

metrics available while evaluating the network performance with DeepLabCut is the 

pixel error and the training losses. Having an overall accuracy of the keypoint 

prediction or a learning curve would be a great insight to have when tuning the 

hyperparameters. Lastly, to finely tune the hyperparameters with DeepLabCut, one 

must use either use a trial-and-error test or tune it based on intuition and experience 

and this can be improved by others or developers of DeepLabCut who could work on 

making DeepLabCut compatible with a hyperparameter optimization algorithm such 

as Bayes search or Grid search rather than random search (trial and error) that was 

adapted for this project. To close off this chapter, this poultry keypoint detection 

project using a deep convolutional network is a basis of future work where others 

could implement the keypoint detection model with another model that could 

accurately predict the health of the poultry based on the estimated posture detected by 

the keypoint detection model. 
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APPENDICES 

APPENDIX A 

List of DeepLabCut Commands, File Parameters [42] 

A.1 Summary of DeepLabCut Commands 
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A.2 Summary of Config.yaml Parameters 

 

 

 

 

 

 

 

 

 



67  

A.3 Summary pose_cfg.yaml Parameters 
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APPENDIX B 

B.1 Collected videos, output videos (predicted by CM2), and labelled dataset link: 

https://unitenedumy-

my.sharepoint.com/:f:/g/personal/ee0102953_student_uniten_edu_my/ErQn9OZZyuF

EuQ4XCLW4N4QBGJ6bKzLdwJhIsie7LEu8Fg?e=sx2HYC 

B.2 Links to this project GitHub repository which contains the installation codes, link 

to the dataset, and codes to the series of tests (please do refer to the file that contains 

the codes as well that is submitted through teams) 

https://github.com/amrhkm/POULTRY-POSE-DEEPLABCUTV2 

 

 


